首页> 外文会议>Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture >Tribeca: Design for PVT variations with local recovery and fine-grained adaptation
【24h】

Tribeca: Design for PVT variations with local recovery and fine-grained adaptation

机译:Tribeca:针对PVT变化的设计,具有本地恢复能力和细粒度适应性

获取原文

摘要

With continued advances in CMOS technology, parameter variations are emerging as a major design challenge. Irregularities during the fabrication of a microprocessor and variations of voltage and temperature during its operation widen worst-case timing margins of the design—degrading performance significantly. Because runtime variations like supply voltage droops and temperature fluctuations depend on the activity signature of the processor''s workload, there are several opportunities to improve performance by dynamically adapting margins. This paper explores the power-performance efficiency gains that result from designing for typical conditions while dynamically tuning frequency and voltage to accommodate the runtime behavior of workloads. Such a design depends on a fail-safe mechanism that allows it to protect against margin violations during adaptation; we evaluate several such mechanisms, and we propose a local recovery scheme that exploits spatial variation among the units of the processor. While a processor designed for worst-case conditions might only be capable of a frequency that is 75% of an ideal processor with no parameter variations, we show that a fine-grained global frequency tuning mechanism improves power-performance efficiency (BIPS3/W) by 40% while operating at 91% of an ideal processor''s frequency. Moreover, a per-unit voltage tuning mechanism aims to reduce the effect of within-die spatial variations to provide a 55% increase in power-performance efficiency. The benefits reported are clearly substantial in light of the ≪1% area overhead relative to existing global recovery mechanisms.
机译:随着CMOS技术的不断进步,参数变化正成为主要的设计挑战。微处理器制造过程中的不规则性以及操作过程中电压和温度的变化会加宽设计的最坏情况时序裕度,从而显着降低性能。由于运行时间的变化(例如电源电压下降和温度波动)取决于处理器工作负载的活动特征,因此存在许多通过动态调整余量来提高性能的机会。本文探讨了通过针对典型条件进行设计而获得的功率性能效率增益,同时动态调整频率和电压以适应工作负载的运行时行为。这样的设计取决于故障保护机制,该机制可以防止在适配过程中违反边距。我们评估了几种这样的机制,并提出了一种利用处理器单元之间空间变化的局部恢复方案。尽管为最坏情况设计的处理器可能只能具有理想处理器的75%的频率,而且没有参数变化,但我们证明,细粒度的全局频率调整机制可以提高电源性能效率(BIPS 3 / W)降低40%,同时以理想处理器频率的91%运行。此外,单位电压调整机制旨在减少管芯内部空间变化的影响,以使电源性能效率提高55%。相对于现有的全球恢复机制,考虑到area1%的区域开销,报告的收益显然是巨大的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号