首页> 外文会议>IEEE Electronics Packaging Technology Conference >Lateral micro fluidic channels array chip fabrication for automated patch clamp application
【24h】

Lateral micro fluidic channels array chip fabrication for automated patch clamp application

机译:横向微流体通道阵列芯片制造用于自动补丁钳

获取原文

摘要

Traditionally, patch-clamp recording is accomplished with a micromanipulator-positioned glass pipette under a microscope. A cell membrane patch is sucked into the glass pipette and forms a high electrical resistance seal. The high cost and labor-intensive methods of conventional patch clamp have prevented the full potential of ion channels as a drug target class being fully realized. Automated patch clamp systems have recently been developed, in order to inexpensively collect large amounts of data in a shorter period of time. More common automation patch-clamp systems use microchips with tiny (1–2μm) holes in a plate instead of pipettes to create the gigaseals and record from single cells. In our previously reported works, a lateral aperture of a buried micro channel was demonstrated, which differs from the common planar patch aperture and is easier fluidic integration and packaging, higher-density array comparing with planar patch aperture. In this paper, we present the optimized fabrication process and integrated the optimized fabrication process to a new designed lateral patch-clamp array chip with 12 independent lateral patch-clamping sites for patch clamp application. At last, the new designed lateral patch clamp devices are utilized to conduct whole cell patch clamp measurements in rat insulinoma (INS-1) cells. High gigaseals (>1 GΩ) were formed between the glass capillary apertures and INS-1 cells. Steady state I-V plots elicited characteristic ion channel properties and longevity of the whole cell mode could be maintained for 1 h without any breakage of the gigaseals, which long enough to apply various compounds and ion channel drugs.
机译:传统上,在显微镜下用微操纵器定位的玻璃移液管完成贴片夹钳记录。将细胞膜贴片吸入玻璃移液管中并形成高电阻密封。传统贴片夹的高成本和劳动密集型方法已经阻止了作为被充分实现的药物靶阶层的离子通道的全部潜力。最近已经开发了自动补丁钳系统,以便以较短的时间内廉价地收集大量数据。更常见的自动化补丁钳系统使用板中具有微小(1-2μm)孔的微芯片而不是移液器,从单个细胞中创建Gigaseals和记录。在我们先前的报告的作品中,证明了掩埋微通道的横向孔,其与共同的平面贴片孔径不同,并且与平面贴片孔径相比,更容易流体集成和包装,更高密度阵列。在本文中,我们介绍了优化的制造工艺,并将优化的制造工艺集成到新的设计的横向贴片夹具阵列芯片,其具有12个独立的横向贴片部位,用于贴片钳位。最后,利用新的设计的横向贴片装置在大鼠胰岛素瘤(INS-1)细胞中进行全细胞膜片钳位。在玻璃毛细管孔和INS-1细胞之间形成高氧化钇(>1gΩ)。稳态I-V绘图引起的特征性离子通道特性和整个细胞模式的寿命可以保持1小时,没有任何破损的涂料,这足以应用各种化合物和离子通道药物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号