首页> 外文会议>IFIP/IEEE International Symposium on Integrated Network Management >Experimental Validation of Compute and Network Resource Abstraction and Allocation Mechanisms within an NFV Infrastructure
【24h】

Experimental Validation of Compute and Network Resource Abstraction and Allocation Mechanisms within an NFV Infrastructure

机译:NFV基础设施内计算和网络资源抽象和分配机制的实验验证

获取原文

摘要

5G supported capabilities (e.g., slicing) enable accommodating heterogeneous vertical services having their own requirements over a common cloud and transport infrastructure. In this context, the EU-H2020 5Growth project defines a service and infrastructure orchestration architecture to automatically deploy network services (NSes) fulfilling vertical demands. In this architecture, the Service Orchestrator (5Gr-SO), as a service provider, maps the vertical service needs into NS requirements (e.g., CPU, RAM, bandwidth, etc.). The 5Gr-SO interacts with an underlying infrastructure orchestrator referred to as 5Gr-RL. The 5Gr-RL, as an infrastructure provider, handles two main functions: i) abstraction of the resources exposed to the 5GrSO, and ii) fine-grained resource selection. Different interaction forms between both 5Gr-SO and 5Gr-RL arise differing in the exchanged abstracted information and resource allocation. We present two 5Gr-SO and 5Gr-RL interaction solutions stemming from two 5Gr-RL operational modes: Infrastructure Abstraction (InA) and Connectivity Service Abstraction (CSA). In the InA approach, the 5Gr-SO is granted with an aggregated view of the computing resources and a set of transport logical links between the cloud locations. In the CSA strategy, besides the aggregated view of the cloud resources, the logical links are associated to potential connectivity service types. Both InA and CSA strategies are presented describing their pros and cons. Moreover, the designed workflows (involving the devised abstraction and allocation algorithms) between the 5Gr-SO and 5Gr-RL entities are experimentally validated. Scalability studies are conducted upon two different cloud and transport infrastructure sizes in terms of the abstraction composition time, the expansion computation time, and total NS deployment time.
机译:5G支持的功能(例如,切片)使得能够容纳具有对共同云和传输基础设施的自身要求的异构垂直服务。在此上下文中,EU-H2020 5Growth项目定义了服务和基础架构编排架构,以自动部署满足垂直需求的网络服务(NSE)。在此架构中,作为服务提供商,服务乐队(5GR-SO)将垂直服务需求映射到NS要求(例如,CPU,RAM,带宽等)。 5GR-SO与底层基础设施策划器相互作用,称为5GR-RL。 5GR-RL作为基础架构提供商,处理两个主要功能:i)暴露于5Grso的资源和II的资源的抽象。在交换的抽象信息和资源分配中出现了5gR-SO和5GR-RL之间的不同交互形式。我们提出了两个5GR-SO和5GR-RL相互作用解决方案,其源于两个5GR-RL操作模式:基础设施抽象(INA)和连接服务抽象(CSA)。在INA方法中,5GR-SO被授予计算资源的聚合视图和云位置之间的一组传输逻辑链路。在CSA策略中,除了云资源的聚合视图之外,逻辑链接与潜在的连接服务类型相关联。介绍了INA和CSA策略,介绍了他们的利弊。此外,通过实验验证5GR-SO和5GR-RL实体之间的设计工作流(涉及设计的抽象和分配算法)。在抽象组合时间,扩展计算时间和总NS部署时间方面,在两个不同的云和运输基础设施大小上进行可扩展性研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号