首页> 外文会议>International Workshop on Content-Based Multimedia Indexing >Explorative hyperbolic-tree-based clustering tool for unsupervised knowledge discovery
【24h】

Explorative hyperbolic-tree-based clustering tool for unsupervised knowledge discovery

机译:无监督知识发现的探索性双曲线 - 基于树的聚类工具

获取原文

摘要

Exploring and annotating collections of images without meta-data is a laborious task. Visual analytics and information visualization can help users by providing interfaces for exploration and annotation. In this paper, we show a prototype application that allows users from the medical domain to use feature-based clustering to perform explorative browsing and annotation in an unsupervised manner. For this, we utilize global image feature extraction, different unsupervised clustering algorithms and hyperbolic tree representation. First, the prototype application extracts features from images or video frames, and then, one or multiple features at the same time can be used to perform clustering. The clusters are presented to the users as a hyperbolic tree for visual analysis and annotation.
机译:探索和注释没有元数据的图像集成是艰苦的任务。可视化分析和信息可视化可以通过为探索和注释提供接口来帮助用户。在本文中,我们显示了一个原型应用程序,允许来自医疗域的用户来使用基于特征的群集以以无监督的方式执行探索性浏览和注释。为此,我们利用全局图像特征提取,不同无监督的聚类算法和双曲线树表示。首先,原型应用程序从图像或视频帧提取功能,然后,同时的一个或多个功能可用于执行群集。将群集呈现给用户作为双曲线树,用于视觉分析和注释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号