首页> 外文会议>International conference on evolutionary multi-criterion optimization >Performance of Specific vs. Generic Feature Sets in Polyphonic Music Instrument Recognition
【24h】

Performance of Specific vs. Generic Feature Sets in Polyphonic Music Instrument Recognition

机译:特定和通用特征集在和弦乐器识别中的性能

获取原文

摘要

Instrument identification in polyphonic audio recordings is a complex task which is beneficial for many music information retrieval applications. Due to the strong spectro-temporal differences between the sounds of existing instruments, different instrument-related features are required for building individual classification models. In our work we apply a multi-objective evolutionary feature selection paradigm to a large feature set minimizing both the classification error and the size of the used feature set. We compare two different feature selection methods. On the one hand we aim at building specific tradeoff feature sets which work best for the identification of a particular instrument. On the other hand we strive to design a generic feature set which on average performs comparably for all instrument classification tasks. The experiments show that the selected generic feature set approaches the performance of the selected instrument-specific feature sets, while a feature set specifically optimized for identifying a particular instrument yields degraded classification results if it is applied to other instruments.
机译:和弦录音中的乐器识别是一项复杂的任务,对许多音乐信息检索应用程序都是有益的。由于现有乐器的声音之间在频谱上存在很大的时空差异,因此需要使用与乐器相关的不同功能来构建单独的分类模型。在我们的工作中,我们将多目标进化特征选择范例应用于大型特征集,从而最大程度地减少了分类误差和所使用特征集的大小。我们比较了两种不同的特征选择方法。一方面,我们的目标是建立特定的权衡功能集,以最有效地识别特定仪器。另一方面,我们努力设计一种通用功能集,该功能集在所有仪器分类任务中的平均性能均相当。实验表明,所选通用特征集接近所选仪器特定特征集的性能,而专门用于识别特定仪器而优化的功能集,如果将其应用于其他仪器,则会产生降级的分类结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号