首页> 外文会议>International Symposium on Software Engineering for Adaptive and Self-Managing Systems >ReSonAte: A Runtime Risk Assessment Framework for Autonomous Systems
【24h】

ReSonAte: A Runtime Risk Assessment Framework for Autonomous Systems

机译:共鸣:自治系统的运行时风险评估框架

获取原文

摘要

Autonomous Cyber Physical Systems (CPSs) are often required to handle uncertainties and self-manage the system operation in response to problems and increasing risk in the operating paradigm. This risk may arise due to distribution shifts, environmental context, or failure of software or hardware components. Traditional techniques for risk assessment focus on design-time techniques such as hazard analysis, risk reduction, and assurance cases among others. However, these static, design-time techniques do not consider the dynamic contexts and failures the systems face at runtime. We hypothesize that this requires a dynamic assurance approach that computes the likelihood of unsafe conditions or system failures considering the safety requirements, assumptions made at design time, past failures in a given operating context, and the likelihood of system component failures. We introduce the ReSonAte dynamic risk estimation framework for autonomous systems. ReSonAte reasons over Bow-Tie Diagrams (BTDs) which capture information about hazard propagation paths and control strategies. Our innovation is the extension of the BTD formalism with attributes for modeling the conditional relationships with the state of the system and environment. We also describe a technique for estimating these conditional relationships and equations for estimating risk based on the state of the system and environment. To help with this process, we provide a scenario modeling procedure that can use the prior distributions of the scenes and threat conditions to generate the data required for estimating the conditional relationships. To improve scalability and reduce the amount of data required, this process considers each control strategy in isolation and composes several single-variate distributions into one complete multi-variate distribution for the control strategy in question. Lastly, we describe the effectiveness of our approach using two separate autonomous system simulations: CARLA and an unmanned underwater vehicle.
机译:通常需要自主网络物理系统(CPS)来处理不确定性并以响应问题和越来越大的运行范式风险而自动管理系统操作。由于分发换档,环境上下文或软件或硬件组件的失败,可能会出现这种风险。风险评估的传统技术侧重于设计时技术,如危险分析,风险减少和保证案例等。但是,这些静态的设计时技术不考虑动态上下文并在运行时失败。我们假设这需要一种动态保证方法,这些方法计算了考虑安全要求的不安全条件或系统故障的可能性,在设计时的设计时间,过去失败的假设以及系统组件故障的可能性。我们介绍了自治系统的共振动态风险估算框架。在船首领带图(BTD)上产生原因,捕获有关危险传播路径和控制策略的信息。我们的创新是BTD形式主义的延伸,属性与系统和环境的状态建模有条件关系。我们还描述了一种用于估计这些条件关系和方程,以基于系统和环境的状态估算风险。为了帮助解决此过程,我们提供了一种场景建模过程,可以使用场景和威胁条件的先前发行版来生成估计条件关系所需的数据。为了提高可扩展性并减少所需的数据量,该过程将每个控制策略隔离,并将几种单个变化的分布组成为有问题的控制策略的一个完整的多变化分布。最后,我们描述了我们使用两个独立的自治系统模拟的方法的有效性:Carla和无人驾驶水下车辆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号