首页> 外文会议>Asia Pacific optical sensors conference >The nanostructure of silica microfibers fabricated by microfluidic self-assembly
【24h】

The nanostructure of silica microfibers fabricated by microfluidic self-assembly

机译:微流控自组装制备二氧化硅微纤维的纳米结构

获取原文

摘要

The porous properties of self-assembled waveguides made up of nanoparticles are characterised. Atomic force microscopy (AFM) reveals predominantly hcp or fcc packing suggesting a remarkably well ordered and distributed porous structure. N_2 adsorption studies estimate a surface area SA ~ 101 m~2/g, a total interstitial volume V_i ~ 1.7 mL/g and a pore size distribution of r ~ (2 - 6) nm. This distribution is in excellent agreement with the idealised values for identically sized particles obtained for the octahedral and tetrahedral pores of the hcp and fcc lattices, estimated to lie within and r_(tet) ~ (2.2 - 3.3) nm and r_(oct) ~ (4.2 - 6.2) nm for particles varying in size over 20 to 30 nm. Optical transmission based percolation studies reveal rapid penetration of Rhodamine dye (< 5 s) with very little percolation of larger molecules such as ZnTPP observed under similar loading conditions. In the latter case, laser ablation was used to determine the transport of hydrated Zn~(2+) to be D ~ 3 × 10~(-4) nm~2s~(-1). By comparison, ZnTPP was not able to percolate into the wire over the time of exposure, t = 10 mins, effectively demonstrating the self-assembled structure acting as a molecular sieve. We discuss the potential of such structures more broadly and conclude that the controllable distribution of such nano-chambers offers the possibility of amplifying, or up-scaling, an otherwise local interaction or nanoreactions to make detection and diagnostics much simpler; it also opens up a new approach to material engineering making new composites with periodic nanoscale variability. These and other unique aspects of these structures are embodied in an overall concept of lab-in-wire, or similar self-assembled structures, extending our previous concept of lab-in-fibre from the micro domain into the nano domain.
机译:表征了由纳米颗粒组成的自组装波导的多孔性质。原子力显微镜(AFM)显示主要是hcp或fcc堆积,表明有序排列良好且分布均匀的多孔结构。 N_2吸附研究估计表面积SA〜101 m〜2 / g,总间隙体积V_i〜1.7 mL / g,孔径分布为r〜(2-6)nm。该分布与从hcp和fcc晶格的八面体和四面体孔获得的尺寸相同的粒子的理想值非常吻合,估计值位于r_(tet)〜(2.2-3.3)nm和r_(oct)〜内。 (4.2-6.2)nm,粒径在20至30 nm之间变化。基于光透射的渗滤研究表明,若丹明染料快速渗透(<5 s),而在相似的负载条件下观察到的较大分子(如ZnTPP)的渗滤却很少。在后一种情况下,采用激光烧蚀法测定水合Zn〜(2+)的迁移率为D〜3×10〜(-4)nm〜2s〜(-1)。相比之下,ZnTPP在t = 10分钟的暴露时间内无法渗透到金属丝中,有效地证明了自组装结构可作为分子筛。我们将更广泛地讨论这种结构的潜力,并得出结论,这种纳米腔的可控分布提供了放大或放大局部相互作用或纳米反应的可能性,从而使检测和诊断变得更加简单。它还开辟了一种新的材料工程方法,可以制造具有周期性纳米级可变性的新复合材料。这些结构的这些和其他独特方面体现在线内实验室或类似的自组装结构的总体概念中,从而将我们先前的光纤实验室概念从微域扩展到了纳米域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号