首页> 外文会议>ASME international conference on energy sustainability >A TRANSVERSE JET REACTOR FOR ZINC AEROSOL HYDROLYSIS
【24h】

A TRANSVERSE JET REACTOR FOR ZINC AEROSOL HYDROLYSIS

机译:用于锌气溶胶水解的横向射流反应器

获取原文

摘要

Performance of a reactor designed for the hydrolysis of Zn in the two-step Zn/ZnO solar thermochemical cycle for hydrogen production is explored. Technically, complete hydrolysis of Zn in the hydrogen production step remains a major barrier to implementation, and much attention has been given to Zn nano-scale reacting aerosols as a solution. The success of this continuous process depends on achieving high particle yields and high conversions in the aerosol. A key challenge is to control the flow field in aerosol reactors to keep the particles entrained in the flow without deposition on the reactor wall. The ability of a new reactor concept based on transverse jet fluid dynamics to control the flow field and rapidly cool the Zn vapor is investigated. In the transverse jet reactor, evaporated Zn entrained in an Ar carrier gas issues vertically into the horizontal tubular reactor through which cooler H_2O and Ar flow. Particles are formed in the presence of steam at ~ 450 K. The trajectory of the jet is controlled via the effective velocity ratio, R, which is the square root of the ratio of the kinetic energy of the jet to that of the cross-flow. A computational fluid dynamics (CFD) model indicates that the trajectory of the jet can be controlled so that the majority of the Zn mass is directed down the center of the reactor, not near the reactor walls for R = 4.25 to R = 4.5. Experimentally, maximum particle yields of 93% of the mass entering the reactor are obtained at R = 4.5.
机译:探索了设计用于在两步制Zn / ZnO太阳热化学循环中水解Zn的反应器的性能,以生产氢气。从技术上讲,在制氢步骤中锌的完全水解仍然是实施的主要障碍,并且已经对以纳米级反应的气溶胶作为溶液给予了很多关注。这种连续过程的成功取决于实现高颗粒产量和气雾剂的高转化率。一个关键的挑战是控制气溶胶反应器中的流场,以保持气流中夹带的颗粒而不会沉积在反应器壁上。研究了基于横向射流流体动力学的新反应堆概念控制流场并快速冷却Zn蒸气的能力。在横向射流反应器中,夹带在Ar载气中的蒸发的Zn垂直排放到卧式管式反应器中,冷却器H_2O和Ar穿过该反应器流动。在〜450 K的蒸汽存在下会形成颗粒。通过有效速度比R来控制射流的轨迹,有效速度比R是射流动能与横流动能之比的平方根。计算流体动力学(CFD)模型表明,可以控制射流的轨迹,以使大部分Zn团块沿反应堆中心向下,而不是在R = 4.25至R = 4.5的反应堆壁附近。实验上,在R = 4.5时,可获得进入反应器的物料的93%的最大颗粒收率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号