首页> 外文会议>European symposium on computer aided process engineering;ESCAPE 22 >In Silico Analysis to Explore the Effect of Various Carbon Sources on Ethanol Production in Zymomonas mobilis
【24h】

In Silico Analysis to Explore the Effect of Various Carbon Sources on Ethanol Production in Zymomonas mobilis

机译:在计算机分析中探索各种碳源对运动发酵单胞菌乙醇生产的影响

获取原文
获取外文期刊封面目录资料

摘要

In the last decade, ethanol has gained popularity as a transportation fuel alternative due to its high octane number, low cetane number and high heat of vaporization. Additionally, ethanol produced via biological process has the advantage of being carbon neutral. Nevertheless, bioethanol only makes up less than 10% of the total gasoline consumption per annum. One of the factors that limit the bioethanol usage is its high production cost due to the utilization of food crops as feedstock. Hence, alternative feedstock such as lignocellulosic biomass becomes more interesting. However, most bioethanol producers could only ferment hexose sugars (glucose and fructose), while lignocellulosic biomass composes of almost equal amount of hexose and pentose sugars. Among various bioethanol producers, Zymomonas mobilis has acquired some special interest because of its high ethanol yield (5-10% more ethanol per fermented glucose) and ethanol tolerance. In spite of having many advantages, the wild strain of Z mobilis could only ferment glucose, fructose, and sucrose. Therefore, recent studies have focused on the development of recombinant strains of Z. mobilis that were capable of utilizing pentose sugars. These studies have so far been limited to time and resources consuming experimental work. Thus, the use of biological model can enable a systematic approach for Z mobilis strain improvement. To this end, we utilized the genome-scale metabolic network of Z mobilis ATCC31821 to investigate the effects of various carbon sources on metabolic activity in Z mobilis for biomass growth and ethanol production. Constraints-based flux analysis utilizing the model was conducted to quantify the maximum yield for ethanol production. The corresponding flux distributions fueled by different carbon sources under investigation were compared with respect to theoretical yield and energy utilization, thereby identifying the indispensable pathways for achieving optimal ethanol production on each carbon source.
机译:在过去的十年中,由于乙醇的辛烷值高,十六烷值低且汽化热高,乙醇已成为一种替代的运输燃料。另外,通过生物过程产生的乙醇具有碳中性的优点。然而,生物乙醇仅占每年汽油总消耗量的不到10%。限制生物乙醇使用的因素之一是由于利用粮食作物作为原料而产生的高生产成本。因此,替代原料例如木质纤维素生物质变得更加有趣。但是,大多数生物乙醇生产商只能发酵己糖(葡萄糖和果糖),而木质纤维素生物质几乎构成等量的己糖和戊糖。在各种生物乙醇生产商中,运动发酵单胞菌(Zymomonas mobilis)因其高乙醇产量(每个发酵葡萄糖多出5-10%的乙醇)和对乙醇的耐受性而获得了一些特殊的关注。尽管具有许多优点,运动发酵单胞菌的野生株只能发酵葡萄糖,果糖和蔗糖。因此,最近的研究集中在能够利用戊糖的运动发酵单胞菌的重组菌株的开发上。迄今为止,这些研究仅限于耗费时间和资源的实验工作。因此,使用生物学模型可以为运动发酵单胞菌菌株的改良提供系统的方法。为此,我们利用运动发酵单胞菌ATCC31821的基因组规模的代谢网络来研究各种碳源对运动发酵单胞菌代谢活动中生物质生长和乙醇生产的影响。利用该模型进行了基于约束的通量分析,以量化乙醇生产的最大产量。比较了由研究中的不同碳源提供的相应通量分布与理论产量和能源利用率的关系,从而确定了在每种碳源上实现最佳乙醇生产的必不可少的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号