首页> 外文会议>AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference >Advances in Helicopter Vibration Control Methods Time-Periodic Reduced Order Modeling and H_2/H_∞ Controller Design
【24h】

Advances in Helicopter Vibration Control Methods Time-Periodic Reduced Order Modeling and H_2/H_∞ Controller Design

机译:直升机振动控制方法的研究-时间降阶建模与H_2 /H_∞控制器设计

获取原文

摘要

This paper presents the implementation of recent developments in system theory within a novel framework to enhance the vibration control of helicopters. Particular focus is given to the vibration control of helicopters flying in a forward flight regime, where the system exhibits time-periodic behavior. The objective of this framework is to provide high performance controllers that can satisfy stability and design performance criteria when implemented in high-fidelity computer simulations or in real time experiments. The framework emphasizes the integration of state-of-the art coupled Computational Fluid Dynamics (CFD) /Computational Structural Dynamics (CSD) analysis in the controller design process to obtain accurate reduced-order aeroelastic models of the helicopter rotor system. Design of time-periodic H_2 and H_∞ controllers are proposed owing to their rigorous stability formulation based on Floquet-Lyapunov theory, and advantages over time-lifted controllers. Within this framework, the time-periodic system models in state-space form were identified using robust subspace model identification method. The time-periodic H_2 and H_∞ synthesis problem was solved using both Linear Matrix Inequality and periodic Ric-cati based formulations. The controllers performance were validated using the high-fidelity aeroelastic simulations. The computational efficiency of using these advanced methods, and the necessity of using the novel framework were demonstrated by implementing an actively controlled flap strategy for vibration suppression of helicopters.
机译:本文介绍了在一个新颖的框架内如何增强直升机的振动控制,从而实现了系统理论的最新进展。特别关注在前向飞行状态下飞行的直升机的振动控制,在该状态下系统表现出时间周期行为。该框架的目的是提供一种高性能控制器,当在高保真度的计算机仿真或实时实验中实施时,可以满足稳定性和设计性能标准。该框架强调在控制器设计过程中集成最先进的计算流体动力学(CFD)/计算结构动力学(CSD)分析,以获取直升机旋翼系统的精确降阶气动弹性模型。提出了基于Floquet-Lyapunov理论的严格的H_2和H_∞控制器稳定性设计方法,并提出了优于时滞控制器的设计方法。在此框架内,使用健壮的子空间模型识别方法来识别状态空间形式的时间周期系统模型。使用线性矩阵不等式和基于周期性Ric-cati的公式都解决了时间周期H_2和H_∞综合问题。控制器的性能已通过高保真气动弹性仿真得到验证。通过采用主动控制的襟翼策略抑制直升机的振动,证明了使用这些先进方法的计算效率以及使用新颖框架的必要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号