首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference exhibit >Numerical Modeling of Shock-to-Detonation Transition in Energetic Materials
【24h】

Numerical Modeling of Shock-to-Detonation Transition in Energetic Materials

机译:高能材料中冲击-爆轰转变的数值模拟

获取原文

摘要

Determining the hazard classification of energetic materials is important for transportation safety and storage concerns. To avoid costly grain redesign and additional testing, a model that adequately predicts the shock sensitivity of energetic materials is required, particularly the outcome of the Naval Ordnance Laboratory Large Scale Gap Test. The goals of this effort are to develop and validate computational tools that predict the shock sensitivity of energetic materials. Specifically, to use our packing code, Rocpack, to generate morphologies of interest for shock sensitivity assessments, and to use our CFD code, RocSDT, to propagate shocks of various strengths through the pack to predict the onset of detonation. Dealing accurately with the material interfaces in this problem is a long-standing challenge, as familiar strategies lead to spurious temperature spikes, and therefore spurious reaction rate spikes. We describe a new strategy, which does not generate spurious spikes, and demonstrate via a number of test problems that numerical convergence can be achieved. We also examine two problems that are stepping stones to a complete simulation; both are planar. In the first, we consider the passage of a shock wave through pure HMX in which a line of hot spots of the kind generated by void collapse are located a short distance behind the shock. When the hot spot spacing is large, the shock remains a shock; when small, transition to detonation occurs. In the second problem we also insert hot spots, but into a matrix of HMX particles and binder.
机译:确定高能材料的危害分类对于运输安全和存储问题很重要。为了避免进行昂贵的谷物重新设计和额外的测试,需要一个能够充分预测高能材料的冲击敏感性的模型,尤其是海军军械实验室大规模间隙测试的结果。这项工作的目标是开发和验证可预测高能材料冲击敏感性的计算工具。具体而言,使用我们的包装代码Rocpack生成感兴趣的形态以进行冲击敏感性评估,并使用我们的CFD代码RocSDT通过包装传播各种强度的冲击以预测爆炸的开始。在这个问题中准确处理材料界面是一项长期的挑战,因为熟悉的策略会导致杂散的温度尖峰,从而导致杂散的反应速率尖峰。我们描述了一种不会产生虚假尖峰的新策略,并通过许多测试问题证明了可以实现数值收敛。我们还研究了两个问题,这些问题正在为完全模拟铺垫。两者都是平面的。在第一个中,我们考虑了冲击波通过纯HMX的过程,在该过程中,由空隙塌陷产生的一类热点位于冲击后面一小段距离处。当热点间距较大时,电击仍然是电击。较小时,发生向爆炸的转变。在第二个问题中,我们也将热点插入到HMX粒子和粘合剂的矩阵中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号