首页> 外文会议>AIAA thermophysics conference >Assessment of Radiative Heating Uncertainty for Hyperbolic Earth Entry
【24h】

Assessment of Radiative Heating Uncertainty for Hyperbolic Earth Entry

机译:评估双曲线地球进入的辐射加热不确定度

获取原文

摘要

This paper investigates the shock-layer radiative heating uncertainty for hyperbolic Earth entry, with the main focus being a Mars return. In Part I of this work, a baseline simulation approach involving the LAURA Navier-Stokes code with coupled ablation and radiation is presented, with the HARA radiation code being used for the radiation predictions. Flight cases representative of peak-heating Mars or asteroid return are defined and the strong influence of coupled ablation and radiation on their aerothermodynamic environments are shown. Structural uncertainties inherent in the baseline simulations are identified, with turbulence modeling, precursor absorption, grid convergence, and radiation transport uncertainties combining for a +34% and -24% structural uncertainty on the radiative heating. A parametric uncertainty analysis, which assumes interval uncertainties, is presented. This analysis accounts for uncertainties in the radiation models as well as heat of formation uncertainties in the flowfield model. Discussions and references are provided to support the uncertainty range chosen for each parameter. A parametric uncertainty of +47.3% and -28.3% is computed for the stagnation-point radiative heating for the 15 km/s Mars-return case. A breakdown of the largest individual uncertainty contributors is presented, which includes C_3 Swings cross-section, photoionization edge shift. and Opacity Project atomic lines. Combining the structural and parametric uncertainty components results in a total uncertainty of+81.3% and -52.3% for the Mars-return case. In Part II, the computational technique and uncertainty analysis presented in Part I are applied to 1960s era shock-tube and constricted-arc experimental cases. It is shown that experiments contain shock layer temperatures and radiative flux values relevant to the Mars-return cases of present interest. Comparisons between the predictions and measurements, accounting for the uncertainty in both, are made for a range of experiments. A measure of comparison quality is defined, which consists of the percent overlap of the predicted uncertainty bar with the corresponding measurement uncertainty bar. For nearly all cases, this percent overlap is greater than zero, and for most of the higher temperature cases (T >13,000 K) it is greater than 50%. These favorable comparisons provide evidence that the baseline computational technique and uncertainty analysis presented in Part I are adequate for Mars-return simulations. In Part III, the computational technique and uncertainty analysis presented in Part I are applied to EAST shock-tube cases. These experimental cases contain wavelength dependent intensity measurements in a wavelength range that covers 60% of the radiative intensity for the 11 km/s, 5 m radius flight case studied in Part I. Comparisons between the predictions and EAST measurements are made for a range of experiments. The uncertainty analysis presented in Part I is applied to each prediction, and comparisons are made using the metrics defined in Part II. The agreement between predictions and measurements is excellent for velocities greater than 10.5 km/s. Both the wavelength dependent and wavelength integrated intensities agree within 30% for nearly all cases considered. This agreement provides confidence in the computational technique and uncertainty analysis presented in Part I, and provides further evidence that this approach is adequate for Mars-return simulations. Part IV of this paper reviews existing experimental data that include the influence of massive ablation on radiative heating. It is concluded that existing data is not sufficient for the present uncertainty analysis. Experiments to capture the influence of massive ablation on radiation are suggested as future work, along with further studies of the radiative precursor and improvements in the radiation properties of ablation products.
机译:本文研究了双曲线地球进入的激波层辐射加热的不确定性,重点是火星返回。在这项工作的第一部分中,提出了一种基线模拟方法,该方法涉及带有消融和辐射耦合的LAURA Navier-Stokes码,而HARA辐射码用于辐射预测。定义了代表峰值加热火星或小行星返回的飞行案例,并显示了消融和辐射耦合对其空气热力学环境的强烈影响。通过湍流建模,前驱体吸收,网格收敛和辐射输运不确定性确定了基线模拟中固有的结构不确定性,这些不确定性组合了辐射加热的+ 34%和-24%的结构不确定性。提出了参数不确定性分析,该分析假设了区间不确定性。该分析考虑了辐射模型中的不确定性以及流场模型中地层热的不确定性。提供讨论和参考以支持为每个参数选择的不确定性范围。对于15 km / s的火星返回情况,停滞点辐射加热的参数不确定度为+ 47.3%和-28.3%。列出了最大的不确定因素,包括C_3 Swings横截面,光电离边缘位移。和不透明度项目原子线。结合结构和参数不确定性成分,对于火星返回情况,总不确定性为+ 81.3%和-52.3%。在第二部分中,第一部分中介绍的计算技术和不确定性分析被应用于1960年代的冲击管和缩弧实验案例。结果表明,实验包含与当前感兴趣的火星返回情况相关的激波层温度和辐射通量值。预测和测量之间的比较(考虑了两者的不确定性)是针对一系列实验进行的。定义了比较质量的量度,该量度由预测不确定度栏与相应的测量不确定度栏的百分比重叠组成。对于几乎所有情况,该百分比重叠都大于零,而对于大多数较高温度的情况(T> 13,000 K),它大于50%。这些有利的比较提供了证据,证明了第一部分中介绍的基线计算技术和不确定性分析对于火星返回模拟是足够的。在第三部分中,将第一部分中介绍的计算技术和不确定性分析应用于EAST冲击管情况。这些实验案例包含在第一部分中研究的11 km / s,5 m半径飞行案例的覆盖60%辐射强度的波长范围内与波长相关的强度测量结果。实验。第一部分中介绍的不确定性分析适用于每个预测,并使用第二部分中定义的度量标准进行比较。对于大于10.5 km / s的速度,预测和测量之间的一致性非常好。几乎所有情况下,取决于波长的强度和取决于波长的积分强度都在30%之内。该协议为第一部分中介绍的计算技术和不确定性分析提供了信心,并提供了进一步的证据,表明该方法足以用于火星返回模拟。本文的第四部分回顾了现有的实验数据,其中包括大规模烧蚀对辐射加热的影响。结论是现有数据不足以进行当前的不确定性分析。捕获大型消融对辐射的影响的实验建议作为未来的工作,以及对辐射前体的进一步研究以及对消融产品辐射性能的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号