首页> 外文会议>IEEE 17th International Symposium on High Performance Computer Architecture >Mercury: A fast and energy-efficient multi-level cell based Phase Change Memory system
【24h】

Mercury: A fast and energy-efficient multi-level cell based Phase Change Memory system

机译:汞:一种快速高效的基于多层单元的相变存储系统

获取原文

摘要

Phase Change Memory (PCM) is one of the most promising technologies among emerging non-volatile memories. PCM stores data in crystalline and amorphous phases of the GST material using large differences in their electrical resistivity. Although it is possible to design a high capacity memory system by storing multiple bits at intermediate levels between the highest and lowest resistance states of PCM, it is difficult to obtain the tight distribution required for accurate reading of the data. Moreover, the required programming latency and energy for a Multiple Level PCM (MLC-PCM) cell is not trivial and can act as a major hurdle in adopting multilevel PCM in a high-density memory architecture design. Furthermore, the effect of process variation (PV) on PCM cell exacerbates the variability in necessary programming current and hence the target resistance spread, leading to the demand for high-latency, multi-iteration-based programming-and-verify write schemes for MLC-PCM. PV-aware control of programming current, programming using staircase down current pulses and programming using increasing reset current pulses are some of the traditional techniques used to achieve optimum programming energy, write latency and accuracy, but they usually target on optimizing only one aspect of the design. In this paper, we address the high-write latency and process variation issues of MLC-PCM by introducing Mercury: A fast and energy efficient multi-level cell based phase change memory architecture. Mercury adapts the programming scheme of a multi-level PCM cell by taking into consideration the initial state of the cell, the target resistance to be programmed and the effect of process variation on the programming current profile of the cell. The proposed techniques act at circuit as well as microarchitecture levels. Simulation results show that Mercury achieves 10% saving in programming latency and 25% saving in programming energy for the PCM memory system compared to that of the tradit--ional methods.
机译:相变存储器(PCM)是新兴的非易失性存储器中最有前途的技术之一。 PCM使用GST材料的电阻率大的差异将数据存储在GST材料的晶相和非晶相中。尽管可以通过在PCM的最高和最低电阻状态之间的中间水平存储多个位来设计高容量存储系统,但是很难获得精确读取数据所需的紧密分布。此外,多级PCM(MLC-PCM)单元所需的编程等待时间和能量并非微不足道,并且可能成为在高密度存储器体系结构设计中采用多级PCM的主要障碍。此外,工艺变化(PV)对PCM单元的影响加剧了必要编程电流的变化,从而加剧了目标电阻的分布,导致对MLC的基于高延迟,基于多次迭代的编程和验证写入方案的需求-PCM。 PV意识的编程电流控制,使用阶梯式下降电流脉冲进行编程以及使用增加的复位电流脉冲进行编程是用于实现最佳编程能量,写入等待时间和精度的一些传统技术,但它们通常只针对优化器件的一个方面。设计。在本文中,我们通过介绍Mercury解决了MLC-PCM的高写入延迟和过程变化问题:Mercury:一种快速高效的基于多层单元的节能型相变存储架构。 Mercury通过考虑单元的初始状态,要编程的目标电阻以及工艺变化对单元编程电流分布的影响,来适应多级PCM单元的编程方案。所提出的技术在电路以及微体系结构级别都起作用。仿真结果表明,与传统的PCM存储系统相比,Mercury可将PCM存储系统的编程等待时间节省10%,将编程能量节省25%。 -- 理性方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号