首页> 外文会议>ICCTP 2010;International conference of Chinese transportation professionals >Characteristics of Track Dynamic Stiffness of Ballastless Turnout inHigh-Speed Railway
【24h】

Characteristics of Track Dynamic Stiffness of Ballastless Turnout inHigh-Speed Railway

机译:无Turn道岔轨道动力刚度特性。高铁

获取原文

摘要

Based on analysis of track stiffness composition of high-speed railway ballastless turnout, a computing method is established to study the characteristics of track dynamic stiffness in switch, connecting part and frog zones. Turnout used in this study is No. 18 ballastless turnout with a speed of 350km/h. Results show that when a train passes a turnout at the speed of 350km/h, all three parts mentioned above provided better vibration isolation for irregularities with wavelengths that are larger than 0.374m, 0.360m and 0.432m respectively. As for ratio of dynamic to static stiffness, nose rail has the largest; stock rail, switch rail and guide rail the second and wing rail the smallest. Each rail has only one same-phase formant when frequency is < 300Hz. Fastener stiffness and damping have great effects on the track dynamic stiffness in turnout zone, i.e. in a frequency range 0~180Hz, dynamic stiffness will increase with increases in either fastener stiffness or damping, thus it is better to set fastener damping ratio within the range 0.1 —^0.3.Track stiffness of a turnout area is a key parameter that influences the dynamic interaction between train and turnout. Reasonable track stiffness can decrease dynamic stress of the turnout by weakening wheel/rail interaction to improve the riding comfort of train, prolong the service life of equipment and reduce maintenance (Wu, 1999 and Lopez, 2001). Passenger dedicated railway lines (PDLs) with a total length of 18,000 km will be built in China. More than 7, 000 sets of high speed railway turnouts are needed, most of which are ballastless turnouts. Since there is little research on the characteristics of dynamic stiffness of ballastless turnout at home and abroad (Chen, 2008; Yao, 2006; Cai, 2007), it is vital to carry out such research to design reasonable track stiffness.Based on analysis of track stiffness composition of ballastless turnout, a calculation method is established to study track dynamic stiffness of switch, connecting parts and frog zones and the influence factors of track dynamic stiffness, with the goal of obtaining useful guidance and instructions for track stiffness design in turnout zones.
机译:在分析高速铁路无ball道岔道轨刚度组成的基础上,建立了一种计算道岔,连接部位和青蛙区轨道动刚度特性的计算方法。本研究中使用的道岔是时速为350km / h的18号无ball道岔。结果表明,当火车以350km / h的速度通过道岔时,上述三个部分对于波长分别大于0.374m,0.360m和0.432m的不规则形提供了更好的隔振效果。至于动静刚度之比,前梁最大。备用滑轨,备用滑轨和滑轨最小,第二滑轨和机翼滑轨。当频率<300Hz时,每个导轨只有一个同相共振峰。扣件的刚度和阻尼对道岔区的轨道动态刚度有很大的影响,即在0〜180Hz的频率范围内,动态刚度会随着扣件的刚度或阻尼的增加而增加,因此最好在该范围内设置扣件的阻尼比0.1-^ 0.3。 道岔区域的轨道刚度是影响列车与道岔之间动态相互作用的关键参数。合理的轨道刚度可以通过减弱轮轨相互作用来降低道岔的动应力,从而改善火车的乘坐舒适性,延长设备的使用寿命并减少维护费用(Wu,1999; Lopez,2001)。中国将建设总长度为18,000公里的客运专用铁路线(PDL)。需要超过7 000套高速铁路道岔,其中大多数是无ball道岔。由于国内外对无ball道岔道岔动态刚度特性的研究很少(Chen,2008; Yao,2006; Cai,2007),因此进行合理的轨道刚度设计至关重要。 在分析无turn道岔道轨刚度组成的基础上,建立了计算道岔,连接件和蛙形区道轨动态刚度及道轨动态刚度影响因素的计算方法,以期获得对道轨刚度的有益指导和指导。在道岔区域进行设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号