首页> 外文会议>23rd Annual Meeting of the IEEE Photonics Society >Cascading plasmonic and nonradiative energy transfer interactions by plasmon-coupling only donor or only acceptor quantum dots of the energy transfer pairs
【24h】

Cascading plasmonic and nonradiative energy transfer interactions by plasmon-coupling only donor or only acceptor quantum dots of the energy transfer pairs

机译:通过仅等离激元耦合能量转移对的施主或受主量子点来级联等离子体和非辐射能量转移相互作用

获取原文

摘要

Nonradiative energy transfer mechanism finds important applications in nanophotonics and nanobiology including nanoscale optical waveguiding and biological nanosensors.1,2 Various fluorophores can take part in such energy transfer interactions and their emission kinetics can thus be strongly modified. For example, colloidal semiconductor quantum dots, also known as nanocrystals (NCs), have widely been shown to serve as donors and acceptors among themselves or with other fluorescent species to transfer excitation energy nonradiatively in close proximity when the spectral conditions are set right. Emission characteristics of such fluorophores can be altered also when coupled with plasmonic structures, e.g., metal nanoparticles (MNPs), in their close proximity via strong plasmon-exciton interactions. One favored result of this plasmonic coupling mechanism is the spontaneous emission enhancement of NCs. Recently plasmon-mediated Förster-type resonance energy transfer (FRET) has been demonstrated and FRET rate has been reported to be increased between acceptor-donor pairs of different species (including NCs) that are both plasmon-coupled.3–5 In these previous reports, however, either donors and acceptors are blended and these blends are plasmon-coupled, or metal layer is placed between the donor and acceptor thin films to plasmon-couple both at the same time. In all of these prior works, the resulting plasmonexciton interactions are not controlled to take place either at the donor site or the acceptor site but at both of the sites. Therefore it has not been possible to identify the coupled interactions. Here we present the first proposition and demonstration of cascaded plasmonic and nonradiative energy transfer interactions that are controlled by selectively plasmon-coupling either only donor NCs or only acceptor NCs of the energy transfer pairs. This scheme uniquely allows for the ability to spatially control plasmon-exciton intera--ctions to take place either at the “start” site (donors) or “finish” site (acceptors) of the energy transfer. This control is achieved by placing the plasmonic layer in the right proximity of the donors (for strong donor-exciton plasmon-coupling) while sufficiently being far away from the acceptors (for weak acceptor-exciton plasmon-coupling), or vice versa. Here we comparatively study and analyze consequent modifications of NC emission kinetics in response to both cases of plasmon-coupling to only the donor NCs and to only the acceptor NCs through steady-state and time-resolved photoluminescence measurements, along with their lifetime and rate calculations.
机译:非辐射能量转移机制在纳米光子学和纳米生物学中具有重要的应用,包括纳米级光波导和生物纳米传感器。 1,2 各种荧光团可以参与这种能量转移相互作用,因此可以强烈地改变其发射动力学。例如,胶体半导体量子点,也称为纳米晶体(NCs),已被广泛证明在它们之间或与其他荧光物质一起充当供体和受体,以在正确设置光谱条件时以非辐射方式近距离非辐射地转移激发能。当与等离激元结构(例如,金属纳米颗粒(MNP))通过紧密的等离激元-激子相互作用紧密结合时,也可以改变这种荧光团的发射特性。这种等离子体耦合机制的一个有利结果是NC的自发发射增强。最近,已经证明了等离激元介导的Förster型共振能量转移(FRET),并且据报道,在等离激子耦合的不同物种(包括NCs)的受主-供体对之间,FRET速率增加。 3-5 但是,在这些先前的报告中,将供体和受体混合,并且将这些混合物进行等离激元耦合,或者在施主和受体薄膜之间放置金属层以同时进行等离激元耦合。在所有这些先前的工作中,所得的等离子体激荡相互作用不被控制在供体位点或受体位点处发生,而是在两个位点处发生。因此,不可能识别耦合的相互作用。在这里,我们介绍级联的等离激元和非辐射能量转移相互作用的第一个命题和演示,这些相互作用是通过选择性等离激元耦合仅控制能量转移对的供体NC或受体NC来控制的。这种方案独特地允许在空间上控制等离激子相互作用的能力。 -- 在能量转移的“起始”位置(捐赠者)或“最终”位置(接受者)进行的操作。通过将等离激元层放置在供体的正确位置(用于强施主-激子等离激元耦合),同时又远离受体(对于弱受体-激子等离激元耦合),可以实现这种控制。在这里,我们通过稳态和时间分辨的光致发光测量,以及它们的寿命和速率计算,比较研究和分析了响应于等离子体激元耦合仅对给体NC和仅对受体NC的两种情况下NC发射动力学的变化。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号