首页> 外文会议>Proceedings of the Ninth IEEE Sensors Conference >Sandwich structure electrochemical assay for single stranded DNA detection
【24h】

Sandwich structure electrochemical assay for single stranded DNA detection

机译:用于单链DNA检测的夹心结构电化学检测

获取原文

摘要

A novel DNA sequence biosensor that utilizes enzyme-labeled probes and electrochemical detection via an interdigitated array (IDA) electrode on a microfluidic chip is presented. Sandwich structure DNA sequence recognition is performed by immobilizing a single stranded DNA (ssDNA) on the microchannel surface (primary probe) that is complementary to a portion of the target, followed by hybridization with target ssDNA and a second ssDNA (secondary DNA probe), which is complementary to another region of the target and is conjugated with β-Galactosidase (β-Gal). Surface confined β-Gal is detected by introducing its substrate, 4-aminophenyl-D-galactopyranoside (PAPG), into the system; β-Gal cleaves PAPG into the electrochemical active compound, p-amino phenol (PAP), which is detected by a Au IDA in a microfluidic channel. The signal is amplified by cycling its reduced and oxidized form between the interleaved anode and cathode. On the chips which are integrated in 60µm high channels, the oxidation currents show linear correlation to the immobilized target DNA concentration between 0 and 100nM. Currents collected on chips where 0 and 0.5nM target DNA is immobilized are significantly different. Similarly, on the chips integrated in the 35µm channels where target DNA is not introduced to form the sandwich (negative control), the oxidation current shows non-differentiable results whether PAPG is present or absent in buffer solution. On the contrary, on the chip where 0.1nM target DNA hybridized with probes, the oxidation current is significantly higher when the buffer contains PAPG. As the enzymatic reaction time increases from 15 to 30 seconds, the signal difference between PAPG and buffer solution almost doubled. By reducing the channel height from 60 to 35µm, the total assay time is reduced from 80 minutes to 35 minutes.
机译:提出了一种新型的DNA序列生物传感器,该传感器利用酶标记的探针并通过微流控芯片上的叉指阵列(IDA)电极进行电化学检测。三明治结构DNA序列识别是通过将单链DNA(ssDNA)固定在与靶标一部分互补的微通道表面(主探针)上,然后与靶标ssDNA和第二个ssDNA杂交(二级DNA探针)进行的,它与靶标的另一个区域互补,并与β-半乳糖苷酶(β-Gal)缀合。通过将底物4-氨基苯基-D-吡喃半乳糖苷(PAPG)引入系统中,可以检测到表面受约束的β-Gal; β-Gal可将PAPG裂解为电化学活性化合物对氨基苯酚(PAP),该化合物可通过AuIDA在微流体通道中检测到。通过在交错的阳极和阴极之间循环其还原和氧化的形式来放大信号。在集成在60µm高通道中的芯片上,氧化电流与固定的目标DNA浓度在0至100nM之间呈线性关系。固定在0和0.5nM目标DNA上的芯片上收集的电流有很大不同。同样,在35µm通道中集成的芯片上,未引入目标DNA形成夹心结构(阴性对照),无论缓冲液中是否存在PAPG,氧化电流均显示出不可区分的结果。相反,在0.1nM靶DNA与探针杂交的芯片上,当缓冲液中含有PAPG时,氧化电流会大大提高。随着酶促反应时间从15秒增加到30秒,PAPG和缓冲溶液之间的信号差几乎翻倍。通过将通道高度从60µm减少到35µm,总的检测时间从80分钟减少到35分钟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号