首页> 外文学位 >Mechanical characteriztion of single-stranded DNA and single-walled carbon nanotube hybrid structures.
【24h】

Mechanical characteriztion of single-stranded DNA and single-walled carbon nanotube hybrid structures.

机译:单链DNA和单壁碳纳米管杂化结构的机械表征。

获取原文
获取原文并翻译 | 示例

摘要

Hybrid nanostructures of single-stranded DNA (ssDNA) and single-walled carbon nanotubes are being proposed as the basis for the next generation of biosensors. For such biosensors, mechanical properties such as the Young's modulus of the hybrid structures play a critical role, which to the best of the author's knowledge is still unknown. Thus, the determination of the Young's modulus of the ssDNA/swCNT hybrid structures was the primary objective of this study.;Hybrid structures of 30mer polyT ssDNA and HiPCORTM swCNTs were conjugated using a well known non-covalent interaction protocol. Atomic force microscopy (AFM) was used to scan and generate topographic images and perform nanoindentation tests on the hybrid structures. Molecular dynamics (MD) simulations using a commercial MD program, Materials StudioRTM were performed to study the nature of non-covalent interactions between the ssDNA and the swCNT on the pico-second timescale.;AFM topography scans of the bare control HiPCORTM swCNTs indicated an average diameter of about 1.0 nm and length of 800 nm. Similarly, the control 30mer polyT ssDNA was found to resemble a half-hemispherical domed structure with an average height of 2.1 nm. Nanoindentation tests yielded the transverse Young's modulus of the control swCNTs to be 78.0 GPa. The control ssDNA were found to have a Young's modulus of 3.3 GPa and 4.0 MPa in dry and wet environments, respectively.;Topographic scans of the ssDNA/swCNT hybrid structures showed the slender swCNTs fully or partially coated along their lengths by ssDNA. The height of the hybrid structures ranged from 2.5 nm to 7.5 nm.;Nanoindentation tests on the ssDNA coated portions of the hybrid structures indicated that, their Young's modulus exponentially decreased with increasing coating thickness. Thinly coated sections were found to have a Young's modulus of 100.0 GPa and 7.0 MPa in dry and wet conditions respectively. The thick walled hybrid sections were found to have an average Young's modulus of 4.5 GPa and 1.0 GPa in the dry and wet environments, respectively. MD results indicated that the wrapping of the ssDNA had a significant impact on the hybrid structures. The longitudinal Young's modulus of a hybrid structure was found to be approximately 50.0 GPa, compared to a bare nanotube whose Young's modulus was approximately 800 GPa.;Overall, the experimental and numerical results displayed consistent trends. The experimental results reported the swCNTs to have the highest transverse Young's modulus followed by the hybrids and the ssDNA. Similarly, the numerical simulations predicted the highest longitudinal Young's modulus for the swCNTs, followed by the hybrids and the DNA.
机译:单链DNA(ssDNA)和单壁碳纳米管的混合纳米结构已被提议作为下一代生物传感器的基础。对于此类生物传感器,机械性能(例如杂化结构的杨氏模量)起着至关重要的作用,据作者所知,这仍然是未知的。因此,确定ssDNA / swCNT杂化结构的杨氏模量是本研究的主要目的。使用众所周知的非共价相互作用方案将30mer polyT ssDNA和HiPCORTM swCNT的杂化结构偶联在一起。原子力显微镜(AFM)用于扫描和生成形貌图像,并对混合结构进行纳米压痕测试。使用商业MD程序Materials StudioRTM进行了分子动力学(MD)模拟,以研究在皮秒级时间内ssDNA和swCNT之间非共价相互作用的性质。裸控制HiPCORTM swCNT的AFM地形图扫描表明平均直径为约1.0 nm,长度为800 nm。类似地,发现对照的30聚体polyT ssDNA类似于半球形半球形结构,平均高度为2.1nm。纳米压痕测试得出,对照swCNT的横向杨氏模量为78.0 GPa。发现对照ssDNA在干燥和潮湿环境下的杨氏模量分别为3.3 GPa和4.0 MPa。ssDNA / swCNT杂化结构的地形扫描显示,细长的swCNT沿其长度完全或部分被ssDNA覆盖。杂化结构的高度在2.5nm至7.5nm的范围内;对杂化结构的ssDNA涂覆部分的纳米压痕测试表明,它们的杨氏模量随着涂层厚度的增加呈指数下降。发现薄涂层的切片在干燥和潮湿条件下的杨氏模量分别为100.0 GPa和7.0 MPa。发现厚壁混合部分在干燥和潮湿环境中的平均杨氏模量分别为4.5 GPa和1.0 GPa。 MD结果表明,ssDNA的包裹对杂种结构有显着影响。与杨氏模量约为800 GPa的裸露纳米管相比,杂化结构的纵向杨氏模量约为50.0 GPa。总体而言,实验和数值结果显示出一致的趋势。实验结果表明,swCNT具有最高的横向杨氏模量,其次是杂种和ssDNA。同样,数值模拟预测了swCNT的最高纵向杨氏模量,其次是杂种和DNA。

著录项

  • 作者

    Rokadia, Husein Juzer.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 244 p.
  • 总页数 244
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号