首页> 外文会议>European photovoltaic solar energy conference >THIN MICROCRYSTALLINE SILICON (μc-Si:H) DOPED LAYERS GROWN BY LAYER-BY-LAYER PECVDMADE FOR SOLAR CELLS WITH HIGH GROWTH RATE I-LAYERS
【24h】

THIN MICROCRYSTALLINE SILICON (μc-Si:H) DOPED LAYERS GROWN BY LAYER-BY-LAYER PECVDMADE FOR SOLAR CELLS WITH HIGH GROWTH RATE I-LAYERS

机译:高生长速率I层太阳能电池逐层PECVD制备的微晶硅(μc-Si:H)掺杂层

获取原文

摘要

Microcrystalline silicon (μc-Si:H) p- and n-type layers have been developed at high temperatures byLayer-by-Layer (LbL) deposition. The LbL deposition consists of alternating boron or phosphorous dopedamorphous silicon depositions and hydrogen plasma treatments by Very High Frequency Chemical Vapor Deposition(VHF PECVD). The layers are developed to be resistant to the temperature and hydrogen flux of a micro- ofpolycrystalline i-layer grown at a high deposition rate in a p-i-n or n-i-p solar cell device.It is concluded that the LbL method is suitable to produce device quality μc-Si:H p- and n-type doped layers in atemperature range from 250 to 400 °C. This is not possible by the standard continuous (CW) PECVD employinghighly hydrogen diluted silane gas, where the addition of dopants reduces the crystallinity. An optimum effectivethickness per deposition cycle (total thickness divided by the number of cycles) of 1.5 nm/cycle is needed forcrystallization. This optimal thickness is independent of dopants and deposition temperature. A minimum thicknessof the first layer is needed for sustaining growth in the LbL process. The doped layers grown by LbL are smootherthan reference samples grown by CW (observed from the Cross-Sectional Transmission Electron Microscopy (XTEM)images). The doping efficiencies in our LbL deposited layers are fundamentally higher than those in CWdeposition (for p layers a doping efficiency of 39% in case of LbL, compared to 1% for CW). The properties of thebest high-temperature doped layers are: LbL p-type μc-Si:H (Ts = 350 °C, d = 29 nm) activation energy = 0.11 eVand dark conductivity = 0.1 ?-1cm-1; LbL n-type μc-Si:H (Ts = 400 °C, d = 31 nm) activation energy = 0.056 eV anddark conductivity = 2.7 ?-1cm-1.Test solar cell devices have been deposited using HWCVD and VHF PECVD deposited μc-Si:H i-layers on top ofthe high temperature (400 °C) LbL μc-Si:H n-type doped layer in an n-i-p configuration on a stainless steel substratewithout back reflector. A high open circuit voltage of 0.65 V and a fill factor of 0.7, show the high doping efficiencyand crystallinity of the n-type doped layer and the resistance of the layer to the high flux of atomic hydrogen duringthe HWCVD deposition. Moreover, the high temperature LbL n-layer withstands the conditions of the high substratetemperature (430 °C) and hydrogen flux when depositing high growth rate (1.6 nm/s) HWCVD a-Si:H i-layer.
机译:微晶硅(μc-Si:H)p型和n型层是在高温下开发的 逐层(LbL)沉积。 LbL沉积由交替掺杂的硼或磷组成 超高频化学气相沉积法进行非晶硅沉积和氢等离子体处理 (VHF PECVD)。这些层被开发为可抵抗微微层的温度和氢通量。 在p-i-n或n-i-p太阳能电池设备中以高沉积速率生长的多晶i-层。 结论是,LbL方法适用于在单晶硅中生产器件质量为μc-Si:H p和n型掺杂层的方法。 温度范围从250到400°C。使用标准连续(CW)PECVD不可能做到这一点 高氢稀释的硅烷气体,其中添加掺杂剂会降低结晶度。最佳效果 每个沉积周期的厚度(总厚度除以周期数)需要为1.5 nm /周期 结晶。该最佳厚度与掺杂剂和沉积温度无关。最小厚度 为了维持LbL过程的增长,需要第一层膜的厚度。 LbL生长的掺杂层更光滑 比通过连续波生长的参考样品(从横截面透射电子显微镜(XTEM)观察) 图片)。我们的LbL沉积层中的掺杂效率从根本上高于连续波中的掺杂效率 沉积(对于L层,p层的掺杂效率为39%,而CW为1%)。的属性 最佳的高温掺杂层为:LbL p型μc-Si:H(Ts = 350°C,d = 29 nm)活化能= 0.11 eV 暗传导率=0.1Ω-1cm-1。 LbL n型μc-Si:H(Ts = 400°C,d = 31 nm)活化能= 0.056 eV 暗电导率=2.7Ω-1cm-1。 使用HWCVD和VHF PECVD沉积的μc-Si:H i层在硅片顶部沉积了测试太阳能电池器件 不锈钢基板上n-i-p构造的高温(400°C)LbLμc-Si:H n型掺杂层 没有后反射器。 0.65 V的高开路电压和0.7的填充系数显示了高掺杂效率 n型掺杂层的结晶度和结晶度以及该层对原子氢高通量的电阻 HWCVD沉积。而且,高温LbL n层可以承受高基板的条件 沉积高生长速率(1.6 nm / s)HWCVD a-Si:H i层时的温度(430°C)和氢通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号