首页> 外文会议>IPC printed circuits expo >Innovative Process Control Technology to Meet the Challenges of Today’s PWB Electrolytic Copper Plating Requirements
【24h】

Innovative Process Control Technology to Meet the Challenges of Today’s PWB Electrolytic Copper Plating Requirements

机译:创新的过程控制技术可应对当今PWB电解铜电镀要求的挑战

获取原文

摘要

To meet the challenges of increasing PWB complexity, an improvement is needed beyond the traditional electrolyticcopper plating process. Specifically all the components of the process including the process chemistries, specificchemical performance and the chosen process control tools must work together in a synergistic manner. Theoptimization of these parameters which include the specific control of all chemical components of the copperadditive systems is what will provide the PWB fabricator with reliable and repeatable improvements in surfacedistribution and plated through hole throwing power. These improvements are especially critical for large panelswith high hole counts (30,000+) and in thick panels (over 0.250 inch thick) with aspect ratios of 12:1 or higher. Thebaseline chemistry performance is only one of the critical aspect to achieving these improvements in distribution andthrowing power on a sustained basis. It has been observed that such improvements can be gained initially from manyof the new electrolytic copper additive systems, especially those employed in the pulse periodic reverse platingsystems. However, it has also been observed that over time, with the wide range of applied current densities and incombinations with the various pulse periodic reverse plating cycles that may be utilized to meet specific PWBdesigns, the performance of many of these chemistries begin to deteriorate. Through improvements in processcontrol of the individual components of the additive system a significant sustained improvement in overallperformance and plating consistency can be achieved. Utilizing real time analysis methods that are routinelyemployed in semiconductor copper plating to maintain optimum performance throughout the bath life, processconsistency can be achieved in the PWB fabrication facility as well. These semiconductor process control tools havebeen successfully adapted and installed into the PWB environment and are used to monitor and control theelectrolytic copper process to insure predictability and consistency of chemical performance. Utilizing a DC- andAC-voltammetric technique in an in-situ, on-line monitoring system, the Real Time Analyzer (RTA) provides a fullchemical analysis of all the components of the copper plating solution. This tool is comprised of an in-tank probepositioned in the plating solution which samples and reports all inorganic and organic components of the platingbath. Using computerized instrumentation the tool requires no calibration, and minimizes the need for manualanalysis in the analytical laboratory. The technique measures potential (voltage) which is varied in a manner, suchthat the electroactive species is forced to be reduced (plated) or oxidized (stripped off) at the electrode. The resultantcurrent is proportional to the concentration of the chemical species in solution. The range of potential applications ofvoltammetry is very wide. Electroanalytical techniques are among the very few techniques that are equally suitablefor analyzing inorganic, organic and organometallic compounds over a very broad range of concentration levels. Thepower of electroanalytical techniques (AC and DC) allows for a deep look into the mechanism of an electrochemicalprocess that may include initial stages of nucleation, crystal growth, chemical reactions coupled to electrochemicalchanges, diffusion, anodic dissolution, and so on. The effect of organic additives on these processes can bequantified and correlated with their concentration.The RTA uses algorithms for both modeling and analysis of voltammetric responses (chemometric approach).Design of experiments (DOE) techniques are used to optimize experimental conditions for voltammetricmeasurement. Calibration procedures include training set design, determination of the optimal-for-analysis portionof DC/AC-signal, outlier detection, regression calculation (PCR - Principal Component Regression), cross- andexternal validation.
机译:为了应对增加PWB复杂性的挑战,需要对传统的电解技术进行改进 镀铜工艺。特别是过程的所有组成部分,包括过程化学, 化学性能和所选的过程控制工具必须以协同方式协同工作。这 优化这些参数,包括对铜的所有化学成分的特定控制 添加剂系统将为PWB制造商的表面提供可靠且可重复的改进 分布和镀通孔的投射能力。这些改进对于大型面板特别重要 具有高孔数(30,000+)和厚板(超过0.250英寸厚)且纵横比为12:1或更高的面板。这 基线化学性能只是实现这些分布和性能改善的关键方面之一 持续投掷力量。已经观察到,最初可以从许多方面获得这种改进。 新的电解铜添加剂系统,特别是在脉冲周期性反向镀覆中使用的系统 系统。但是,还观察到,随着时间的流逝,随着施加的电流密度变化越来越大, 与可用于满足特定PWB的各种脉冲周期性反向电镀循环的组合 设计中,许多这些化学试剂的性能开始下降。通过过程改进 控制添加剂体系的各个组成部分,整体上将得到持续的显着改善 可以实现性能和电镀一致性。使用常规的实时分析方法 用于半导体铜镀层,以在整个镀液寿命,工艺过程中保持最佳性能 在PWB制造设备中也可以实现一致性。这些半导体工艺控制工具具有 已成功改装并安装到PWB环境中,用于监视和控制 电解铜工艺可确保化学性能的可预测性和一致性。使用直流和 实时分析仪(RTA)在现场在线监测系统中提供交流伏安技术 镀铜溶液中所有成分的化学分析。该工具由一个内置探头组成 放置在电镀液中,可以采样并报告电镀中的所有无机和有机成分 洗澡。使用计算机化仪器,该工具无需校准,并最大限度地减少了手动操作 在分析实验室进行分析。该技术测量以某种方式变化的电势(电压),例如 电活性物质被迫在电极处还原(电镀)或氧化(剥离)。结果 电流与溶液中化学物质的浓度成正比。的潜在应用范围 伏安法很宽。电分析技术是极少数同样适用的技术 用于在很宽的浓度范围内分析无机,有机和有机金属化合物。这 电分析技术(交流和直流)的强大功能使您可以深入了解电化学的机理 此过程可能包括成核,晶体生长,耦合到电化学的化学反应的初始阶段 变化,扩散,阳极溶解等。有机添加剂对这些过程的影响可以是 量化并与其浓度相关。 RTA使用算法对伏安响应进行建模和分析(化学计量学方法)。 实验设计(DOE)技术用于优化伏安法的实验条件 测量。校准程序包括训练集设计,确定最佳分析部分 DC / AC信号,异常值检测,回归计算(PCR-主成分回归),交叉和 外部验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号