首页> 外文会议>ASME international mechanical engineering congress and exposition >ELECTRON-PHONON NON-EQUILIBRIUM IN NANOSCALE GOLD FILMS
【24h】

ELECTRON-PHONON NON-EQUILIBRIUM IN NANOSCALE GOLD FILMS

机译:纳米级金膜的电子 - 声子非平衡

获取原文
获取外文期刊封面目录资料

摘要

Ultrashort-pulsed laser irradiation on metals creates a thermal non-equilibrium between electrons and the phonons. Previous computational studies used the two-temperature model and its variants to model this non-equilibrium. However, when the laser pulse duration is smaller than the relaxation time of the energy carriers or when the carriers mean free path is larger than the material dimension, these macroscopic models fail to capture the physics accurately. In this paper, the non-equilibrium between energy carriers is modeled via numerical solution of the Boltzmann Transport Model (BTM) for electrons and phonons which is applicable over a wide range of length and time scales. The BTM is solved using the Discontinuous Galerkin Finite Element Method for spatial discretization and the three-step Runge Kutta temporal discretization. Temperature dependant electron-phonon coupling factor and electron heat capacity are used due to the strong electron-phonon non-equilibrium considered in this study. The results from the proposed model is compared with existing experimental studies on laser heating of macroscale materials. The model is then used to study laser heating of gold films, by varying parameters such as the film thickness, laser fluence and pulse duration. It is found that the temporal evolution of electron and phonon temperatures in nanometer size gold films are very different from the macroscale films. For a given laser fluence and pulse duration, the peak electron temperature increases with a decrease in the thickness of the gold film. Both film size as well as laser fluence significantly affect the melting time. For a fluence of 5000 J/m~2, and a pulse duration of 75 fs, gold films of thickness smaller than 200 nm melt before reaching electron-phonon equilibrium. However, for the film thickness of 2000 nm, even with the highest laser fluence examined, the electrons and phonons reach equilibrium and the gold film does not melt.
机译:超短脉冲激光照射在金属上产生电子和声子之间的热非平衡。以前的计算研究使用了两个温度模型及其变体来模拟这种非平衡。然而,当激光脉冲持续时间小于能量载体的弛豫时间或当载体的平均自由路径大于材料尺寸时,这些宏观模型无法准确捕获物理。在本文中,能量载波之间的非平衡通过用于电子和声子的Boltzmann运输模型(BTM)的数值溶液来建模,这适用于各种长度和时间尺度。使用不连续的Galerkin有限元方法来解决BTM,用于空间离散化和三步跳Kutta时间离散化。由于本研究中考虑的强电子 - 声子非平衡,使用温度依赖性电子 - 声子耦合因子和电子热容量。所提出的模型的结果与现有的Macroscale材料激光加热实验研究进行了比较。然后,通过改变诸如膜厚度,激光流量和脉冲持续时间的不同参数来研究模型来研究金膜的激光加热。发现纳米尺寸金膜中的电子和声子温度的时间演变与宏观膜非常不同。对于给定的激光通量和脉冲持续时间,峰值电子温度随着金膜的厚度的降低而增加。两种薄膜尺寸以及激光物流量显着影响熔化时间。对于5000 j / m〜2的流量,脉冲持续时间为75 fs,在达到电子 - 声子平衡之前熔体小于200nm的金薄膜。然而,对于2000nm的薄膜厚度,即使在检查最高的激光器流量,电子和声子达到平衡,金膜不熔化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号