首页> 外文会议> >Beamforming and imaging with acoustic lenses in small, high-frequency sonars
【24h】

Beamforming and imaging with acoustic lenses in small, high-frequency sonars

机译:在小型高频声纳中使用声透镜进行波束成形和成像

获取原文

摘要

A high-resolution acoustic imaging system is an important aid in turbid water where optical systems fail. The three sonars described in this paper use acoustic lenses to form near-video-quality images. The first sonar, Limpet Mine Imaging Sonar (LIMIS), is diver-held, forms 64 beams, each with a beamwidth of 0.35/spl deg/ in the horizontal axis by 7/spl deg/ in the vertical axis. This sonar has a 20/spl deg/ field-of-view, operates at 2 MHz, has a practical range of 10 m, and forms between 5 and 12 images/second. The second sonar, Glendora Lake Acoustic Imaging System, (GLACIS), is used to monitor underwater tests and pans and tilts on a platform that can change depth. This sonar forms 64 beams, each with a beamwidth of 0.55/spl deg/ horizontal and 10/spl deg/ vertical. It has a 32/spl deg/ field of view, operates at 750 kHz, and forms 5 or 9 images/second at an operating range of 60 or 30 m, respectively. The third sonar, Acoustic Barnacle Imaging Sonar (ABIS), mounts on an ROV and forms 128 beams, each with a beamwidth of 0.25/spl deg/ horizontal by 10/spl deg/ vertical. This sonar has a 32/spl deg/ field-of-view, operates at 3 MHz, has a range between 1.8 m and 2.4 m, and forms 64 images/second. All three sonars use a set of thin, acoustic lenses made of polymethylpentene to focus sound on a 1-3 composite linear array. The acoustic lenses form beams at the speed of sound with no circuitry and thus eliminate the complexity and power consumption of conventional beamforming electronics. Two disadvantages are (1) the lenses and the spaces between the lenses add volume in front of the transducer array, and (2) multiple reflections between lens surfaces cause internal reverberation. The reverberation inside these sonars is about 40 dB down from the target echoes and scatters to form a slightly brighter background. No range-shifted "ghosts" of target images are seen.
机译:高分辨率的声学成像系统在光学系统出现故障的混浊水中非常重要。本文描述的三个声纳使用声透镜来形成接近视频质量的图像。第一个声纳是Limpet矿井成像声纳(LIMIS),由潜水员手持,形成64束声束,每束声束的水平宽度在水平轴上为0.35 / spl deg /,在垂直轴上为7 / spl deg /。该声纳的视场角为20 / spl deg /,工作频率为2 MHz,实用范围为10 m,形成5到12幅图像/秒。第二个声纳是Glendora湖声成像系统(GLACIS),用于监视水下测试以及在可以改变深度的平台上的摇动和倾斜。该声纳形成64个波束,每个波束的波束宽度为水平的0.55 / spl deg /垂直和10 / spl deg /垂直的波束宽度。它具有32 / spl deg /的视场,以750 kHz的频率工作,并分别在60或30 m的工作范围内形成5或9幅图像/秒。第三个声纳,声学藤壶成像声纳(ABIS),安装在ROV上并形成128束,每束的束宽为0.25 / spl deg /水平,10 / spl deg /垂直。该声纳的视野为32 / spl deg /,工作频率为3 MHz,范围在1.8 m至2.4 m之间,每秒形成64张图像。所有三个声纳都使用一组由聚甲基戊烯制成的薄声透镜,将声音聚焦在1-3个复合线性阵列上。声学透镜在没有电路的情况下以声速形成光束,因此消除了传统波束形成电子设备的复杂性和功耗。两个缺点是(1)镜头和镜头之间的空间增加了换能器阵列前面的体积,(2)镜头表面之间的多次反射导致内部混响。这些声纳内部的混响比目标回声和散射低约40 dB,从而形成稍微更亮的背景。没有看到目标图像的范围偏移的“重影”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号