首页> 外文会议>Medical computing vision and bayesian and graphical models for biomedical imaging >Rigid Slice-To-Volume Medical Image Registration Through Markov Random Fields
【24h】

Rigid Slice-To-Volume Medical Image Registration Through Markov Random Fields

机译:通过马尔可夫随机场进行严格的逐量医学图像配准

获取原文
获取原文并翻译 | 示例

摘要

Rigid slice-to-volume registration is a challenging task, which finds application in medical imaging problems like image fusion for image guided surgeries and motion correction for volume reconstruction. It is usually formulated as an optimization problem and solved using standard continuous methods. In this paper, we discuss how this task be formulated as a discrete labeling problem on a graph. Inspired by previous works on discrete estimation of linear transformations using Markov Random Fields (MRFs), we model it using a pairwise MRF, where the nodes are associated to the rigid parameters, and the edges encode the relation between the variables. We compare the performance of the proposed method to a continuous formulation optimized using simplex, and we discuss how it can be used to further improve the accuracy of our approach. Promising results are obtained using a monomodal dataset composed of magnetic resonance images (MRI) of a beating heart.
机译:严格的切片到卷配准是一项具有挑战性的任务,它在医学成像问题中得到了应用,例如用于图像引导手术的图像融合和用于体积重建的运动校正。通常将其公式化为优化问题,并使用标准连续方法解决。在本文中,我们讨论了如何将此任务表述为图形上的离散标注问题。受先前使用马尔可夫随机场(MRF)进行线性变换的离散估计的工作的启发,我们使用成对MRF对其进行建模,其中节点与刚性参数相关联,并且边缘对变量之间的关系进行编码。我们将提出的方法的性能与使用单纯形法优化的连续公式进行比较,并讨论了如何将其用于进一步提高方法的准确性。使用由跳动心脏的磁共振图像(MRI)组成的单峰数据集可获得有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号