首页> 外文会议>Medical computing vision and bayesian and graphical models for biomedical imaging >Unsupervised Framework for Consistent Longitudinal MS Lesion Segmentation
【24h】

Unsupervised Framework for Consistent Longitudinal MS Lesion Segmentation

机译:一致的纵向MS病变分割的无监督框架

获取原文
获取原文并翻译 | 示例

摘要

Quantification of white matter lesion changes on brain magnetic resonance (MR) images is of major importance for the follow-up of patients with Multiple Sclerosis (MS). Many automated segmentation methods have been proposed. However, most of them focus on a single time point MR scan session and hence lack consistency when evaluating lesion changes over time. In this paper, we present MSmetrix-long, an unsupervised method that incorporates temporal consistency by jointly segmenting MS lesions of two subsequent scan sessions. The method is formulated as a Maximum A Posteriori model on the FLAIR image intensities of both time points and the difference image intensities, and optimised using an expectation maximisation algorithm. Validation is performed on two different data sets in terms of consistency and sensitivity to MS lesion changes. It is shown that MSmetrix-long outperforms MSmetrix-cross for the quantification of MS lesion evolution over time.
机译:量化脑磁共振(MR)图像上的白质病变变化对于多发性硬化症(MS)患者的随访至关重要。已经提出了许多自动分割方法。但是,它们中的大多数都集中在单个时间点MR扫描会话上,因此在评估病变随时间的变化时缺乏一致性。在本文中,我们提出了MSmetrix-long,一种无监督的方法,该方法通过共同分割两个后续扫描会话的MS病变而并入了时间一致性。该方法在时间点和差异图像强度的FLAIR图像强度上被公式化为最大后验模型,并使用期望最大化算法进行了优化。在对MS病变变化的一致性和敏感性方面,对两个不同的数据集进行了验证。结果表明,随着时间的推移,MSmetrix-long的表现优于MSmetrix-cross。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号