首页> 外文会议>Medical computing vision and bayesian and graphical models for biomedical imaging >Landmark-Based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images
【24h】

Landmark-Based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images

机译:纵向结构性MR图像的基于地标的阿尔茨海默氏病诊断

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a landmark-based feature extraction method for AD diagnosis using longitudinal structural MR images, which requires no nonlinear registration or tissue segmentation in the application stage and is robust to the inconsistency among longitudinal scans. Specifically, (1) the discriminative landmarks are first automatically discovered from the whole brain, which can be efficiently localized using a fast landmark detection method for the testing images; (2) High-level statistical spatial features and contextual longitudinal features are then extracted based on those detected landmarks. Using the spatial and longitudinal features, a linear support vector machine (SVM) is adopted for distinguishing AD subjects from healthy controls (HCs) and also mild cognitive impairment (MCI) subjects from HCs, respectively. Experimental results demonstrate the competitive classification accuracies, as well as a promising computational efficiency.
机译:在本文中,我们提出了一种使用纵向结构MR图像进行AD诊断的基于地标的特征提取方法,该方法在应用阶段不需要非线性配准或组织分割,并且对纵向扫描之间的不一致具有鲁棒性。具体来说,(1)首先从整个大脑中自动发现可区分的界标,可以使用快速界标检测方法对测试图像进​​行有效地定位。 (2)然后根据检测到的地标提取高级统计空间特征和上下文纵向特征。利用空间和纵向特征,采用线性支持向量机(SVM)分别将AD受试者与健康对照(HCs)以及轻度认知障碍(MCI)受试者与HC进行区分。实验结果证明了竞争性分类的准确性以及有希望的计算效率。

著录项

  • 来源
  • 会议地点 Athens(GR)
  • 作者单位

    Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA;

    Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA;

    Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA;

    Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA,Department of Computer Science, UNC at Chapel Hill, Chapel Hill, NC, USA;

    Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA,Department of Brain and Cognitive Engineering,Korea University, Seoul, Republic of Korea;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号