首页> 外文会议>Mathematics Several Complex Variables and Complex Geometry; ; >Ritt's theorem and the Heins map in hyperbolic complex manifolds
【24h】

Ritt's theorem and the Heins map in hyperbolic complex manifolds

机译:双曲复流形中的Ritt定理和Heins映射

获取原文
获取原文并翻译 | 示例

摘要

Let X be a Kobayashi hyperbolic complex manifold, and assume that X does not contain compact complex submanifolds of positive dimension (e.g., X Stein). We shall prove the following generalization of Ritt's theorem: every holomorphic self-map f: X → X such that f(X) is relatively compact in X has a unique fixed point т(f) ∈ X, which is attracting. Furthermore, we shall prove that т(f) depends holomorphically on f in a suitable sense, generalizing results by Heins, Joseph-Kwack and the second author.
机译:令X为Kobayashi双曲复流形,并假设X不包含正维的紧凑复子流形(例如X Stein)。我们将证明Ritt定理的以下一般化:每个全纯自映射f:X→X使得f(X)在X中相对紧凑,并具有吸引的唯一固定点т(f)∈X。此外,我们将证明т(f)在适当的意义上全同地依赖于f,并推广了Heins,Joseph-Kwack和第二作者的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号