首页> 外文会议>Mathematics of data/image pattern recognition, compression, and encryption with applications XI >The optimum approximation of an orthogonal expansion having bounded higher order correlations of stochastic coefficients
【24h】

The optimum approximation of an orthogonal expansion having bounded higher order correlations of stochastic coefficients

机译:具有有限高阶随机系数相关性的正交展开的最佳逼近

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we establish the optimum interpolation approximation for a set of multi-dimensional statistical orthogonal expansions. Each signal has a bounded linear combination of higher order self-correlations and mutual-correlations with respect to coefficients of the expansion. For this set of signals, we present the optimum interpolation approximation that minimizes various worst-case measures of mean-square error among all the linear and the nonlinear approximations. Finally, as a practical application of the optimum interpolation approximation, we present a discrete numerical solution of linear partial differential equations with two independent variables.
机译:在本文中,我们为一组多维统计正交展开建立了最佳插值逼近。每个信号具有关于扩展系数的高阶自相关和互相关的有界线性组合。对于这组信号,我们提出了最佳插值逼近,该最优插值逼近使所有线性和非线性逼近中的各种均方误差的最坏情况度量最小化。最后,作为最佳插值逼近的实际应用,我们提出了带有两个自变量的线性偏微分方程的离散数值解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号