首页> 外文会议>Mathematical models and methods in modern science >Speech bandwidth classification using general acoustic features, modified spectral roll-off and artificial neural network
【24h】

Speech bandwidth classification using general acoustic features, modified spectral roll-off and artificial neural network

机译:使用常规声学特征,改进的频谱滚降和人工神经网络对语音带宽进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present research work regarding the speech bandwidth classification using artificial neural network as a classifier. The information about speech bandwidth can be used for the purpose of indexing the multimedia material and also for boosting the automatic speech recognition performance by using separate acoustic models for individual acoustic classes. We proposed also new features for bandwidth classification. The AMSR (Average Modified Spectral Roll-off) feature showed encouraging performance and it is especially appropriate for mobile applications with limited processing capabilities (it needs only simple threshold classifier). The best result of 98.3% was achieved using a combination of bandwidth-specific and general acoustic features.
机译:在本文中,我们介绍了有关使用人工神经网络作为分类器进行语音带宽分类的研究工作。关于语音带宽的信息可用于为多媒体材料建立索引的目的,也可通过对各个声学类别使用单独的声学模型来提高自动语音识别性能。我们还提出了带宽分类的新功能。 AMSR(平均修改频谱滚降)功能显示出令人鼓舞的性能,特别适合处理能力有限的移动应用程序(仅需要简单的阈值分类器)。结合特定带宽和一般声学功能,可以达到98.3%的最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号