首页> 外文会议>Mathematical Methods in Pattern and Image Analysis >Dilated contour extraction and component labeling algorithm for object vector representation
【24h】

Dilated contour extraction and component labeling algorithm for object vector representation

机译:目标向量表示的膨胀轮廓提取和成分标记算法

获取原文
获取原文并翻译 | 示例

摘要

Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.
机译:从二进制图像中提取对象边界对于许多应用来说都很重要,例如,图像矢量化,包含分割结果的图像的自动解释,打印和手写的文档和工程图,地图以及AutoCAD工程图。高效且可靠的轮廓提取对于模式识别也很重要,因为它会对基于形状的对象表征和识别产生影响。提出的轮廓跟踪和组件标记算法会生成与相应区域关联的膨胀(子像素)轮廓。该算法具有以下特点:(1)总是产生不相交,不退化的轮廓,包括一像素宽的物体。 (2)在轮廓遍历过程中,将图像的外部和内部(即孔周围)轮廓与相应区域相关联; (3)保持由相邻像素的8邻居或4邻居连通性指定的对象区域的期望连通性; (4)避免了背景和前景的退化区域。 (5)它允许轻松地扩充,以提供有关区域之间的遏制关系的信息; (6)它的时间复杂度在轮廓点的数量上主要是线性的。这种早期的组件标记(轮廓区域关联)使图像信息的后续基于对象的有效处理成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号