首页> 外文会议>Mathematical Methods in Pattern and Image Analysis >Pattern Recognition and classification using Weightless Neural Networks (WNN) and Steinbuch Lernmatrix
【24h】

Pattern Recognition and classification using Weightless Neural Networks (WNN) and Steinbuch Lernmatrix

机译:使用失重神经网络(WNN)和Steinbuch Lernmatrix进行模式识别和分类

获取原文
获取原文并翻译 | 示例

摘要

This proposal presents a novel use of Weightless Neural Networks (WNN) and Steinbuch Lernmatrix for pattern recognition and classification. High speed of learning, easy of implementation and flexibility given by WNN, combined with the learning capacity, recovery efficiency, noise immunity and fast processing shown by Steinbuch Lernmatrix are key factors considered on the pattern recognition exposed by the suggested model. For experimental purposes, the fundamental pattern sets are built and provided to the model under the learning phase. The additive, subtractive and mixed noises are applied to fundamental patterns to check out the response of the model during the recovery phase. Field Programmable Gate arrays are used in the implementation of such model, since it allows custom user-defined models to be embedded in a reconfigurable hardware platform, and provides block memories and dedicated multipliers suitable for the model.
机译:该建议提出了一种新型的失重神经网络(WNN)和Steinbuch Lernmatrix用于模式识别和分类的方法。 WNN的学习速度高,易于实现和灵活性,以及​​Steinbuch Lernmatrix所展示的学习能力,恢复效率,抗噪性和快速处理能力是建议模型所揭示的模式识别所考虑的关键因素。出于实验目的,在学习阶段构建了基本模式集并将其提供给模型。将加性,减性和混合噪声应用于基本模式,以检查恢复阶段模型的响应。现场可编程门阵列用于这种模型的实现,因为它允许将用户定义的自定义模型嵌入可重配置的硬件平台中,并提供适合该模型的块存储器和专用乘法器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号