首页> 外文会议>Mathematical Methods in Pattern and Image Analysis >Transformations of Neural Inputs in Lattice Dendrite Computation
【24h】

Transformations of Neural Inputs in Lattice Dendrite Computation

机译:晶格枝晶计算中神经输入的变换

获取原文
获取原文并翻译 | 示例

摘要

In the present paper, lattice dendrite computation is extended with non-linear transformations of neural inputs that are applied before local discrimination is performed by each dendrite of an artificial neuron. At the expense of increasing the gap with biological analogies or biophysical similarities, the proposed mathematical extension to the basic single layer lattice perceptron model has the advantage that with appropriate input transformations one type synaptic connections can be used, excitatory or inhibitory only; similarly, a reduction in the number of dendrites needed to solve certain one-class recognition problems can be achieved. Illustrative examples are given to show the new capabilities and possible applications of this enhanced single layer lattice perceptron.
机译:在本文中,通过在人工神经元的每个枝晶执行局部区分之前应用的神经输入的非线性变换,扩展了晶格枝晶的计算。以增加与生物学相似性或生物物理相似性的差距为代价,对基本单层晶格感知器模型的拟议数学扩展具有以下优点:通过适当的输入转换,可以使用一种类型的突触连接,仅是兴奋性的或抑制性的。同样,可以减少解决某些一类识别问题所需的树枝状晶体的数量。给出了说明性示例,以显示此增强型单层晶格感知器的新功能和可能的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号