首页> 外文会议>Mathematical foundations of computer science 2010 >Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds
【24h】

Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds

机译:打破矩形边界对公式大小下界的限制

获取原文
获取原文并翻译 | 示例

摘要

Karchmer, Kushilevitz and Nisan formulated the formula size problem as an integer programming problem called the rectangle bound and introduced a technique called the LP bound, which gives a formula size lower bound by showing a feasible solution of the dual problem of its LP-relaxation. As extensions of the LP bound, we introduce novel general techniques proving formula size lower bounds, named a quasi-additive bound and the Sherali-Adams bound. While the Sherali-Adams bound is potentially strong enough to give a lower bound matching to the rectangle bound, we prove that the quasi-additive bound can surpass the rectangle bound.
机译:Karchmer,Kushilevitz和Nisan将公式大小问题公式化为称为矩形边界的整数规划问题,并引入了一种称为LP边界的技术,该技术通过显示其LP松弛对偶问题的可行解给出了公式大小下界。作为LP界的扩展,我们引入了新颖的通用技术来证明公式大小的下界,即拟加和界和Sherali-Adams界。尽管Sherali-Adams边界可能足够强,可以提供与矩形边界的下边界匹配,但我们证明了准可加边界可以超过矩形边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号