首页> 外文会议>Chemistry amp; materials for lead-based batteries symposium 2018 >Why Separator Pore Space Connectivity Matters for Battery Operation
【24h】

Why Separator Pore Space Connectivity Matters for Battery Operation

机译:为什么分离器孔隙空间连通性对于电池操作很重要

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, when discussing lithium ion battery (LIB) performance, diffusion of lithium ions in the electrolyte-filled pore space is given by the diffusion of lithium ions in the electrolyte scaled by the effective transport coefficient of the microstructure, which is the ratio of porosity and tortuosity along the through-plane (TP) direction between the electrodes. [1] While electrolyte-surface interactions also play a role in transport, the geometry of structure plays a key role in transport as we have shown in a previous study. [2] Microporous polyolefin membranes have been used as separators in LIBs for several decades, and have been manufactured with a variety of thicknesses, pore structures, and surface chemistries. [3] Recently, we have shown that it is possible to obtain quantitative reconstructions of LIB separators using focus-ion-beam scanning electron microscope (FIB-SEM) tomography. Polyethylene (PE) and polypropylene (PP) separators exhibit distinct morphologies that stem from the different processes used to manufacture them. The PE separator microstructure is isotropic, while that of PP is anisotropic. However, the respective porosities, TP tortuosities, and thus the effective transport coefficients, of the PE and PP microstructures are similar. Here we show that these microstructural characteristics are not sufficient to predict separator performance. We use the imaged PE and PP structures as a case study to determine whether a more complete analysis of structure can help us gain insights into what type of separator structure is optimal. We perform topological and nodal analysis and carry out numerical diffusion simulations on tomographic reconstructions of commercial battery separators and computationally generated separator structures of comparable porosity, TP tortuosity, and effective transport coefficient. High connectivity of the pores, as found in PE separators, enables ion gradients to be smoothed out within a fraction of the separator thickness. A structure with multiple straight cylindrical channels, though offering excellent TP tortuosity and effective transport, has zero connectivity density and, due to the likely presence of defects, is more susceptible to Li plating if integrated into a lithium ion battery. We propose that connectivity should be considered along with effective transport in separators, in order to understand and optimize separator performance, and that topological and network theory should be applied regularly to characterize the porous structures in energy applications. This work highlights the importance of the connectivity of the separator pore space. In particular, we show that simply reducing the tortuosity of the separator pore space at the expense of connectivity between pores, is not favourable for today's commercial batteries as it prevents smoothing out of in-plane ion gradients that emerge due to the microscale porosity of battery electrodes. This new understanding enables us to design separator microstructures that are safer and accommodate fast charge and discharge.
机译:传统上,当讨论锂离子电池(LIB)的性能时,锂离子在电解质填充的孔空间中的扩散是通过锂离子在电解质中的扩散来确定的,该扩散率是由微结构的有效传输系数(孔隙率之比)来衡量的电极之间沿通板(TP)方向的曲折性。 [1]尽管电解质表面相互作用在运输中也起着作用,但结构的几何形状在运输中起着关键作用,正如我们在先前的研究中所显示的那样。 [2]微孔聚烯烃膜已在LIB中用作隔板,已有数十年的历史,并且已制成各种厚度,孔结构和表面化学物质。 [3]最近,我们表明可以使用聚焦离子束扫描电子显微镜(FIB-SEM)层析成像技术来定量重建LIB分离器。聚乙烯(PE)和聚丙烯(PP)隔板表现出不同的形态,这是由于制造它们的工艺不同而引起的。 PE隔板的微观结构是各向同性的,而PP的微观结构是各向异性的。然而,PE和PP微结构的各自的孔隙率,TP曲折度以及因此的有效传输系数是相似的。在这里,我们表明这些微观结构特征不足以预测隔板的性能。我们使用成像的PE和PP结构作为案例研究,以确定对结构进行更完整的分析是否可以帮助我们了解哪种分隔器结构是最佳类型。我们进行拓扑和节点分析,并对商用电池隔膜的层析成像重建以及可计算的孔隙度,TP曲折度和有效传输系数的隔膜结构进行数值扩散模拟。在PE隔板中发现的孔的高连通性使离子梯度能够在隔板厚度的一小部分内被平滑。具有多个直圆柱通道的结构,尽管具有出色的TP弯曲度和有效的传输性能,但连接密度为零,并且由于可能存在缺陷,因此如果集成到锂离子电池中,则更容易受到Li镀层的影响。我们建议应考虑连通性以及在分离器中的有效运输,以了解和优化分离器的性能,并且应定期应用拓扑和网络理论来表征能源应用中的多孔结构。这项工作突出了分隔器孔隙空间连通性的重要性。特别是,我们表明,以牺牲孔之间的连通性为代价简单地降低隔板孔空间的曲折度,对于当今的商用电池来说是不利的,因为它可以防止由于电池的微孔率而出现的面内离子梯度的平滑化电极。这种新的认识使我们能够设计出更安全并适应快速充放电的隔板微结构。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    ETH Zurich, Laboratory for Nanoelectronics, Department of Information Technology and Electrical Engineering, Zurich, CH-8092 Switzerland;

    ETH Zurich, Laboratory for Nanoelectronics, Department of Information Technology and Electrical Engineering, Zurich, CH-8092 Switzerland;

    ETH Zurich, Laboratory for Nanoelectronics, Department of Information Technology and Electrical Engineering, Zurich, CH-8092 Switzerland;

    ETH Zurich, Laboratory for Nanoelectronics, Department of Information Technology and Electrical Engineering, Zurich, CH-8092 Switzerland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号