首页> 外文会议>Machine Learning for Signal Processing, 2009. MLSP 2009 >Combining multiple partitions created with a graph-based construction for data clustering
【24h】

Combining multiple partitions created with a graph-based construction for data clustering

机译:结合使用基于图的结构创建的多个分区进行数据聚类

获取原文

摘要

This paper focusses on a new clustering method called evidence accumulation clustering with dual rooted prim tree cuts (EAC-DC), based on the principle of cluster ensembles also known as “combining multiple clustering methods”. A simple weak clustering algorithm is introduced based upon the properties of dual rooted minimal spanning trees and it is extended to multiple rooted trees. Co-association measures are proposed that account for the cluster sets obtained by these methods. These are exploited in order to obtain new ensemble consensus clustering algorithms. The EAC-DC methodology applied to both real and synthetic data sets demonstrates the superiority of the proposed methods.
机译:本文着眼于一种新的聚类方法,即基于聚类集成的原理(又称为“组合多种聚类方法”)的一种具有双根原始树切割的证据累积聚类(EAC-DC)。根据双根最小生成树的性质,提出了一种简单的弱聚类算法,并将其扩展到多根树。提出了关联方法,以说明通过这些方法获得的聚类集。利用这些来获得新的整体共识聚类算法。将EAC-DC方法应用于实际和综合数据集都证明了所提出方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号