首页> 外文会议>Machine intelligence and bio-inspired computation: theory and applications X >Applying data mining techniques to detect abnormal flight characteristics
【24h】

Applying data mining techniques to detect abnormal flight characteristics

机译:应用数据挖掘技术检测异常飞行特征

获取原文
获取原文并翻译 | 示例

摘要

This paper targets to highlight flight safety issues by applying data mining techniques to recorded flight data and proactively detecting abnormalities in certain flight phases. For this purpose, a result oriented method is offered which facilitates the process of post flight data analysis. In the first part of the study, a common time period of flight is defined and critical flight parameters are selected to be analyzed. Then the similarities of the flight parameters in time series . basis are calculated for each flight by using Dynamic Time Warping (DTW) method. In the second part, hierarchical clustering technique is applied to the aggregate data matrix which is comprised of all the flights to be studied in terms of similarities among chosen parameters. Consequently, proximity levels among flight phases are determined. In the final part, an algorithm is constructed to distinguish outliers from clusters and classify them as suspicious flights.
机译:本文旨在通过将数据挖掘技术应用于记录的飞行数据并主动检测某些飞行阶段的异常情况来突出显示飞行安全问题。为此,提供了一种面向结果的方法,该方法有助于飞行后数据分析的过程。在研究的第一部分中,定义了一个常见的飞行时间段,并选择了关键的飞行参数进行分析。然后在时间序列上飞行参数的相似性。使用动态时间规整(DTW)方法为每个航班计算基础。在第二部分中,将层次聚类技术应用于聚合数据矩阵,该矩阵由所有要根据所选参数之间的相似性进行研究的航班组成。因此,确定了飞行阶段之间的接近度。在最后一部分中,构造了一种算法,以区分离群值和聚类值并将其分类为可疑飞行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号