首页> 外文会议>Machine Learning, Optimization, and Data Science >A Machine Learning Approach for Line Outage Identification in Power Systems
【24h】

A Machine Learning Approach for Line Outage Identification in Power Systems

机译:一种用于电力系统线路中断识别的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses power line topology change detection by using only measurement data. As Phasor Measurement Units (PMUs) become widely deployed, power system monitoring and real-time analysis can take advantage of the large amount of data provided by PMUs and leverage the advances in big data analytics. In this paper, we develop practical analytics that are not tightly coupled with the power flow analysis and state estimation, as these tasks require detailed and accurate information about the power system. We focus on power line outage identification, and use a machine learning framework to locate the outage(s). The same framework is used for both single line outage identification and multiple line outage identification. We first compute the features that are essential to capture the dynamic characteristics of the power system when the topology change happens, transform the time-domain data to frequency-domain, and then train the algorithms for the prediction of line outage based on frequency domain features. The proposed method uses only voltage phasor angles obtained by continuous monitoring of buses. The proposed method is tested by simulated PMU data from PS AT [1], and the prediction accuracy is comparable to the previous work that involves solving power flow equations or state estimation equations.
机译:本文仅通过使用测量数据来解决电力线拓扑变化检测。随着相量测量单元(PMU)的广泛部署,电力系统监视和实时分析可以利用PMU提供的大量数据,并利用大数据分析的进步。在本文中,我们开发了不与潮流分析和状态估计紧密结合的实用分析,因为这些任务需要有关电力系统的详细而准确的信息。我们专注于电力线中断识别,并使用机器学习框架来定位中断。相同的框架用于单线中断识别和多线中断识别。我们首先计算对于在拓扑发生变化时捕获电力系统动态特性必不可少的特征,将时域数据转换为频域,然后根据频域特征训练用于预测线路中断的算法。所提出的方法仅使用通过连续监测总线获得的电压相角。所提出的方法通过PS AT [1]的模拟PMU数据进行了测试,其预测精度与以前的工作相当,该工作涉及求解潮流方程或状态估计方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号