首页> 外文会议>IUPAC 10th International conference on novel materials and their synthesis: Book of abstracts >MODELING OF STEP-GROWTH INTERFACIAL POLYMERIZATION: THE KINETICS AND POLYMER FILM STRUCTURE
【24h】

MODELING OF STEP-GROWTH INTERFACIAL POLYMERIZATION: THE KINETICS AND POLYMER FILM STRUCTURE

机译:逐步生长界面聚合的建模:动力学和聚合物膜结构

获取原文
获取原文并翻译 | 示例

摘要

Step-growth alternating interfacial polymerization (IP) between miscible or immiscible monomer melts is studied theoretically and by dissipative particle dynamics simulations. The kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film. In linear IP, the film is nearly uniform and the reaction proceeds in a narrow zone, which expands much slower than the whole film. It leads to a ehemical extrusion" of newly formed polymer from the reaction zone. This concept is used to predict the degree of polymerization (DP) and end-group distribution within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average DP. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. Crosslinking in the case of branched IP drastically changes the mechanism of polymer film development and makes the theoretical model inapplicable. The simulations demonstrate that the extrusion effect is suppressed and polymerization proceeds like in a homogeneous system until the gel-point is attained. Growth of the comonomer immiscibility postpones the gel transition and, oppositely to the linear IP, decreases the final number-average DP. The obtained film is highly inhomogeneous with a dense core and loose shell regardless of the comonomer interactions. The results extend the previous theoretical reports on IP and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D-printing technologies. The financial support from Russian Foundation of Basic Research (Project 12-03-00817a) is appreciated. We thank Moscow State University Supercomputer Center for providing the computational resources.
机译:理论上并通过耗散粒子动力学模拟研究了可混溶或不可混溶单体熔体之间的逐步增长交替界面聚合(IP)。最初的双层系统的动力学从反应转移到扩散控制。由不混溶的单体组成的聚合物在形成膜的界面处沉淀。在线性IP中,薄膜几乎是均匀的,反应在狭窄的区域进行,该区域的膨胀比整个薄膜要慢得多。它导致新生成的聚合物从反应区隆隆地挤出。该概念用于预测膜中的聚合度(DP)和端基分布,与模拟结果非常吻合。增加共聚单体的不相容性会导致薄膜更薄,更均匀,平均DP更高,最终产物的多分散性要比均相逐步增长聚合的预期大得多,支链IP情况下的交联会极大地改变聚合物薄膜的形成机理,从而使理论模型不适用。模拟表明,挤出作用受到抑制,聚合反应像在均相体系中一样进行,直到达到凝胶点为止;共聚单体不混溶性的增长推迟了凝胶转变,并且与线性IP相反,降低了最终的数均DP。所获得的薄膜高度不均一,具有致密的核和疏松的壳,而与共同的单体相互作用。结果扩展了先前有关IP的理论报告,并提供了对内部膜结构和聚合物特性的新见解,这对于膜制备,微囊化和3D打印技术非常重要。感谢俄罗斯基础研究基金会(项目12-03-00817a)的财政支持。感谢莫斯科国立大学超级计算机中心提供的计算资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号