首页> 外文会议>Intravascular imaging and computer assisted stenting and large-scale annotation of biomedical data and expert label synthesis >Generation of a HER2 Breast Cancer Gold-Standard Using Supervised Learning from Multiple Experts
【24h】

Generation of a HER2 Breast Cancer Gold-Standard Using Supervised Learning from Multiple Experts

机译:使用多位专家的监督学习来生成HER2乳腺癌金标准

获取原文
获取原文并翻译 | 示例

摘要

Breast cancer is one of the most common cancer in women around the world. For diagnosis, pathologists evaluate the expression of biomarkers such as HER2 protein using immunohistochemistry over tissue extracted by a biopsy. This assessment is performed through microscopic inspection, estimating intensity and integrity of the membrane cells's staining and scoring the sample as 0 (negative), 1 + , 2+, or 3+ (positive): a subjective decision that depends on the interpretation of the pahologist. This work is aimed to achieve consensus among opinions of pathologists in cases of HER2 breast cancer biopsies, using supervised learning methods based on multiple experts. The main goal is to generate a reliable public breast cancer gold-standard, to be used as training/testing dataset in future developments of machine learning methods for automatic HER2 overexpression assessment. There were collected 30 breast cancer biopsies, with positive and negative diagnosis, where tumor regions were marked as regions-of-interest (ROIs). Magnification of 20× was used to crop non-overlapping rectangular sections according to a grid over the ROIs, leading a dataset with 1.250 images. In order to collect the pathologists' opinions, an Android application was developed. The biopsy sections are presented in a random way, and for each image, the expert must assign a score (0, 1 + , 2+, 3+). Currently, six referent Chilean breast cancer pathologists are working on the same set of samples. Getting the pathologists' acceptance was a hard and time consuming task. Even more, obtaining the scoring of pathologists is a task that requires subtlety communication and time to manage their progress in the use of the application.
机译:乳腺癌是全世界女性中最常见的癌症之一。为了进行诊断,病理学家使用免疫组织化学技术对活检组织提取的组织进行生物标志物(例如HER2蛋白)的表达评估。该评估是通过显微镜检查进行的,估计膜细胞染色的强度和完整性,并将样品的评分定为0(阴性),1 +,2 +或3+(阳性):这是主观决定,取决于对样品的解释。气象学家。这项工作旨在通过使用基于多个专家的监督学习方法,就HER2乳腺癌活检病例中的病理学家达成共识。主要目标是生成可靠的公共乳腺癌金标准,以在自动HER2过表达评估的机器学习方法的未来发展中用作训练/测试数据集。收集了30份乳腺癌活检,诊断为阳性和阴性,其中肿瘤区域标记为关注区域(ROI)。根据ROI上的网格,使用20倍放大率裁剪不重叠的矩形部分,从而获得包含1.250张图像的数据集。为了收集病理学家的意见,开发了一个Android应用程序。活检部分以随机方式呈现,并且对于每个图像,专家必须指定一个分数(0、1 +,2 +,3 +)。目前,智利的六名乳腺癌乳腺癌病理学家正在研究同一组样本。获得病理学家的认可是一项艰巨而费时的任务。更重要的是,获得病理学家的评分是一项需要细微沟通和时间来管理其在应用程序使用中的进度的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号