【24h】

Algebraic Operations on PQ Trees and Modular Decomposition Trees

机译:PQ树和模块化分解树上的代数运算

获取原文
获取原文并翻译 | 示例

摘要

Partitive set families are families of sets that can be quite large, but have a compact, recursive representation in the form of a tree. This tree is a common generalization of PQ trees, the modular decomposition of graphs, certain decompositions of boolean functions, and decompositions that arise on a variety of other combinatorial structures. We describe natural operators on partitive set families, give algebraic identities for manipulating them, and describe efficient algorithms for evaluating them. We use these results to obtain new time bounds for finding the common intervals of a set of permutations, finding the modular decomposition of an edge-colored graph (also known as a two-structure), finding the PQ tree of a matrix when a consecutive-ones arrangement is given, and finding the modular decomposition of a permutation graph when its permutation realizer is given.
机译:集合集族是集合集的族,它们可以很大,但是具有树形式的紧凑的递归表示。该树是PQ树,图的模块分解,布尔函数的某些分解以及在各种其他组合结构上产生的分解的常见概括。我们描述了分集集族上的自然算子,给出了操纵它们的代数恒等式,并描述了评估它们的有效算法。我们使用这些结果来获得新的时限,以找到一组排列的公共间隔,找到边缘色图(也称为二元结构)的模分解,当连续的矩阵时找到矩阵的PQ树给出了一个排列,并在给出了排列实现器的情况下找到排列图的模分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号