【24h】

Approximation Schemes for Node-Weighted Geometric Steiner Tree Problems

机译:节点加权几何Steiner树问题的逼近方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the following variant of the geometric Steiner tree problem. Every point u which is not included in the tree costs a penalty of π(u) units. Furthermore, every Steiner point we use costs cs units. The goal is to minimize the total length of the tree plus the penalties. We prove that the problem admits a polynomial time approximation scheme, if the points lie in the plane. Our PTAS uses a new technique which allows us to bypass major requirements of Arora's framework for approximation schemes for geometric optimization problems. It may thus open new possibilities to find approximation schemes for geometric optimization problems that have a complicated topology. Furthermore the techniques we use provide a more general framework which can be applied to geometric optimization problems with more complex objective functions.
机译:在本文中,我们考虑几何斯坦纳树问题的以下变体。树中未包含的每个点u的代价为π(u)个单位。此外,我们使用的每个斯坦纳点的成本都是cs单位。目标是最大程度地减少树的总长度和罚款。我们证明,如果点位于平面中,则该问题允许多项式时间逼近方案。我们的PTAS使用了一项新技术,该技术使我们可以绕过Arora框架的主要要求,以解决几何优化问题的近似方案。因此,这可能为寻找具有复杂拓扑的几何优化问题的近似方案提供新的可能性。此外,我们使用的技术提供了一个更通用的框架,可以将其应用于具有更复杂目标函数的几何优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号