【24h】

MONOLITHIC INTEGRATION OF OPTOELECTRONIC DEVICES USING QUANTUM WELL INTERMIXING

机译:利用量子阱混合法对光电子器件进行单相集成

获取原文
获取原文并翻译 | 示例

摘要

Quantum-well intermixing (QWI) can shift the bandgap and refractive index of quantum-well (QW) materials after their growth is completed. Our studies of QWI focused on impurity-free vacancy diffusion (IFVD) in the InGaAs/GaAs/AlGaAs material system. The IFVD process consists of two steps, namely deposition of a capping layer on the sample surface, followed by rapid thermal annealing (RTA). In our experiments aiming at selection of appropriate materials for enhancement or inhibition of QWI, QW samples were capped with single layers of either spin-on glass (SOG) or MgF_2. Room-temperature photoluminescence (PL) spectra were taken before and after RTA. Blue-shift of the PL peak wavelength provides direct evidence that QWI occurred, and can be conveniently used to evaluate the degree of intermixing. We show that SOG capping accelerates interdiffusion, while MgF_2 acts as QWI inhibitor. Together, these two materials can then be used to achieve spatially selective QWI required in monolithic integration of optoelectronic devices.
机译:量子阱混合(QWI)可以在完成生长后改变量子阱(QW)材料的带隙和折射率。我们对QWI的研究集中于InGaAs / GaAs / AlGaAs材料系统中的无杂质空位扩散(IFVD)。 IFVD工艺包括两个步骤,即在样品表面上沉积覆盖层,然后进行快速热退火(RTA)。在我们的实验中,为了选择合适的材料来增强或抑制QWI,QW样品被单层旋涂玻璃(SOG)或MgF_2覆盖。在RTA之前和之后获取室温光致发光(PL)光谱。 PL峰值波长的蓝移提供了发生QWI的直接证据,并且可以方便地用于评估混合程度。我们显示SOG封顶加速了相互扩散,而MgF_2充当QWI抑制剂。然后,这两种材料可以一起用于实现光电器件单片集成所需的空间选择性QWI。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号