首页> 外文学位 >Quantum nanostructure intermixing for monolithic semiconductor photonic integration.
【24h】

Quantum nanostructure intermixing for monolithic semiconductor photonic integration.

机译:用于单片半导体光子集成的量子纳米结构混合。

获取原文
获取原文并翻译 | 示例

摘要

Quantum well intermixing (QWI), a postgrowth bandgap engineering technology, has been viewed as a promising method for semiconductor photonics integrated circuits (PICs). In this research, we investigated a novel intermixing process that yields large bandgap blueshift at low activation energy in various quantum well and dot structures using metallic impurity induced disordering technique. Large bandgap selectivity and high intermixed material quality have also been observed from GaAs-based quantum well nanostructures. Impurity-free vacancy induced disordering (IFVD), Cu:SiO2 intermixing and nitrogen (N) ion-implantation induced disordering (N-IID) have been performed to promote the efficient group-III intermixing in InP-based quantum dash laser structure. Using Cu:SiO2 and N-IID to promote universal intermixing on dash-inwell InP-based laser structure, up to a maximum bandgap shift of 208 nm (115 meV) and 193 nm (106 meV) were observed from the Cu:SiO2 and N-IIID intermixed samples, respectively.;Proof-of-concept devices based on the quantum well and quantum dash intermixing developed in this work are demonstrated. The bandgap tuned lasers are fabricated and characterized. The demonstration of intermixed devices is important as it can provide tremendous insight into the technological capabilities of intermixing in regards to the active-passive monolithic and planar integration at a postgrowth level. Bandgap tuned QDash lasers have been fabricated with over 180 and 130 nm wavelength blueshift after Cu:SiO2 and N-IID processed, respectively. The broadband laser emissions at room temperature up to 80 nm wavelength coverage have been demonstrated. The N-IID lasers exhibit higher internal quantum efficiency, lower threshold current density, while the Cu:SiO 2 intermixing process degrades the laser performance. However, larger broad lasing spectra and wavelength tuning were obtained from Cu:SiO 2 lasers. Optimizations of the Cu:SiO2 process have yet to be investigated. Hence, the broadband QDash lasers can be served as a practical, compact, cost effective, long lifetime, and highly efficient emitter well suited for diverse applications in optical communications, spectroscopy, sensing and imaging.
机译:量子阱混合(QWI)是一种生长后的带隙工程技术,被认为是半导体光子集成电路(PIC)的一种有前途的方法。在这项研究中,我们研究了一种新颖的混合过程,该过程使用金属杂质诱导的无序技术在各种量子阱和点结构中以低活化能产生了大的带隙蓝移。从基于GaAs的量子阱纳米结构中还观察到了大的带隙选择性和高混合材料质量。已经进行了无杂质的空位诱导无序(IFVD),Cu:SiO2混合和氮(N)离子注入诱导无序(N-IID),以促进基于InP的量子破折号激光结构中III族的有效混合。使用Cu:SiO2和N-IID促进In-dash InP基激光器结构上的通用混合,从Cu:SiO2和N-IID观察到最大带隙位移为208 nm(115 meV)和193 nm(106 meV)。分别是N-IIID混合样本。展示了基于这项工作开发的基于量子阱和量子破折混合的概念验证装置。带隙调谐激光器被制造和表征。混合设备的演示非常重要,因为它可以提供关于混合的技术能力的深刻见解,涉及到后生长级的主动-被动单片和平面集成。在分别处理Cu:SiO2和N-IID之后,已经制造了带隙调谐QDash激光器,其蓝移分别超过180和130 nm。已经证明了室温下高达80 nm波长范围内的宽带激光发射。 N-IID激光器显示出更高的内部量子效率,更低的阈值电流密度,而Cu:SiO 2混合过程降低了激光器性能。但是,从Cu:SiO 2激光器获得了更大的宽激光光谱和波长调谐。 Cu:SiO2工艺的优化尚待研究。因此,宽带QDash激光器可以用作实用,紧凑,经济高效,使用寿命长且高效的发射器,非常适合光通信,光谱学,传感和成像中的各种应用。

著录项

  • 作者

    Hongpinyo, Vitchanetra.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号