首页> 外文会议>International Conference on Microchannels and Minichannels; 20050613-15; Toronto(CA) >LATTICE BOLTZMANN MODEL FOR FLOW AND HEAT TRANSFER OF NANOFLUIDS IN A MICROCHANNEL
【24h】

LATTICE BOLTZMANN MODEL FOR FLOW AND HEAT TRANSFER OF NANOFLUIDS IN A MICROCHANNEL

机译:微通道中纳米流体的流动和传热的格子Boltzmann模型

获取原文
获取原文并翻译 | 示例

摘要

A thermal lattice Boltzmann model for investigating the flow and heat transfer process of the mixtures of the pure liquid and nanoparticles (nanofluids) in the microchannel has been developed. The external and internal forces, such as buoyancy, gravity, drag and Brownian force, and the mechanical and thermal interactions among the nanoparticles and their impact on the equilibrium velocity have been introduced. Along with a Gauss white noise model for Brownian motion, the double-distribution-function (DDF) approach is used to derive the velocities and temperatures of nanofluids in a microchannel. Some numerical computations of this model have been performed and several results have been provided in this paper. It has been found that the temperature distribution of the nanofluids in the microchannel is quite different from that of pure water flowing through a channel. Due to the random motion of the suspended nanoparticles under the action of various forces, the temperature distribution of the nanofluids seems to be irregular and the temperature distribution in the vertical direction becomes flatter compared to that for pure water in a channel. The distribution morphology and the volume fraction of the nanoparticles play a vital role in enhancing the heat transfer of the nanofluids. Numerical results also demonstrate that the distribution of the suspended nanoparticles leads to a fluctuation of the Nusselt number of the nanofluids in the direction of the main flow. Nusselt number also increases with an increase in the inlet Reynolds number.
机译:已经开发出用于研究微通道中纯液体和纳米颗粒(纳米流体)混合物的流动和传热过程的热格子Boltzmann模型。引入了外力和内力,例如浮力,重力,阻力和布朗力,以及纳米粒子之间的机械和热相互作用以及它们对平衡速度的影响。与用于布朗运动的高斯白噪声模型一起,双分布函数(DDF)方法用于导出微通道中纳米流体的速度和温度。该模型已进行了一些数值计算,并提供了一些结果。已经发现,微通道中的纳米流体的温度分布与流过通道的纯净水的温度分布完全不同。由于悬浮的纳米颗粒在各种力的作用下随机运动,因此纳米流体的温度分布似乎是不规则的,并且与通道中的纯水相比,垂直方向的温度分布变得更平坦。纳米颗粒的分布形态和体积分数在增强纳米流体的热传递中起着至关重要的作用。数值结果还表明,悬浮的纳米颗粒的分布导致纳米流体的努塞尔特数在主流方向上波动。努塞尔数也随着入口雷诺数的增加而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号