首页> 外文期刊>International Journal of Heat and Mass Transfer >A solid-liquid local thermal non-equilibrium lattice Boltzmann model for heat transfer in nanofluids. Part I: Model development, shear flow and heat conduction in a nanofluid
【24h】

A solid-liquid local thermal non-equilibrium lattice Boltzmann model for heat transfer in nanofluids. Part I: Model development, shear flow and heat conduction in a nanofluid

机译:用于纳米流体传热的固液局部热非平衡晶格Boltzmann模型。第一部分:纳米流体中的模型开发,剪切流和热传导

获取原文
获取原文并翻译 | 示例
           

摘要

A solid-liquid local thermal non-equilibrium lattice Boltzmann model for hydrodynamics and heat transfer in a nanofluid is developed in this paper. In this proposed model, interactions between fluid and solid nanoparticles, random motion of nanoparticles as well as heat transfer between nanoparticles and the base fluid are taken into consideration. This novel model is applied to two simple nanofluids problems: isothermal shear flow between two parallel plates moving at different velocities, and heat conduction between two parallel plates at different temperatures. For the problem of shear flow, it is found that nanoparticles random motion causes the instantaneous velocity distribution of a nanofluid to become non-linear in the shear flow between two parallel plates at microscopic level. At macroscopic level, it is found that as nanoparticles volume fraction increases, effects of nanoparticles random motion are enlarged and the time-average velocity distribution of a nanofluid deviates more from a linear distribution in a shear flow. For the problem of heat conduction between parallel plates at different temperatures, it is found that random motion of nanoparticles together with their high thermal diffusivity and thermal conductivity, causing the instantaneous temperature distribution in the nanofluid to become non-linear between two parallel plates at different temperatures. Temperature inside a nanoparticle is shown to be non-uniform, and temperature gradients in the fluid near a nanoparticles are elevated, thus heat transfer rate is enhanced near a nanoparticle. Time-average temperature gradients of a nanofluid at hot/cooled wall are higher than those of a pure fluid in heat conduction between parallel plates at different temperatures. Comparisons of calculated dynamic viscosity and thermal conductivity based on this novel model are found in good agreement with existing correlation equations. Thus, the accuracy of this novel solid–liquid local thermal non-equilibrium model for a nanofluid is validated.
机译:本文开发了一种固液局部热非平衡晶格玻尔兹曼模型,用于流体在纳米流体中的传热和传热。在该模型中,考虑了流体和固体纳米颗粒之间的相互作用,纳米颗粒的随机运动以及纳米颗粒和基础流体之间的热传递。这种新颖的模型适用于两个简单的纳米流体问题:以不同速度运动的两个平行板之间的等温剪切流,以及在不同温度下两个平行板之间的热传导。对于剪切流的问题,发现纳米颗粒的随机运动导致纳米流体的瞬时速度分布在微观水平的两个平行板之间的剪切流中变为非线性。在宏观水平上,发现随着纳米颗粒体积分数的增加,纳米颗粒随机运动的影响增大,并且纳米流体的时间平均速度分布更多地偏离剪切流中的线性分布。对于不同温度下平行板之间的导热问题,发现纳米颗粒的随机运动以及其高的热扩散率和导热性,导致纳米流体中的瞬时温度分布在不同温度的两个平行板之间变为非线性。温度。纳米粒子内部的温度显示为不均匀,并且纳米粒子附近的流体中的温度梯度升高,因此纳米粒子附近的传热速率提高。在不同温度下,在平行板之间的热传导中,纳米流体在热/冷壁处的时间平均温度梯度要高于纯流体的时间平均温度梯度。发现基于该新型模型计算的动态粘度和导热系数的比较与现有的相关方程式非常吻合。因此,验证了这种新颖的纳米流体固液局部热非平衡模型的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号