【24h】

Queueing Systems with Long-Range Dependent Input Process and Subexponential Service Times

机译:具有远程相关输入过程和次指数服务时间的排队系统

获取原文
获取原文并翻译 | 示例

摘要

We analyze the asymptotic tail distribution of stationary waiting times and stationary virtual waiting times in a single-server queue with long-range dependent arrival process and subexponential service times. We investigate the joint impact of the long range dependency of the arrival process and of the tail distribution of the service times. We consider two traffic models that have been widely used to characterize the long-range dependence structure, namely, the M/G/∞ input model and the Fractional Gaussian Noise (FGN) model. We focus on the response times of the customers in a First-Come First-Serve (FCFS) queueing system, although the results carry through to the backlog distribution of the system with any arbitrary queueing discipline. When the arrival process is driven by an M/G/∞ input model we show that if the residual service time tail distribution F_e is lighter than the residual session duration G_e, then the stationary waiting time is dominated by the long-range dependence structure, which is determined by the residual session duration G_e. If the residual service time distribution F_e is heavier than the residual session duration G_e, then the tail distribution of the stationary waiting time is dominated by that of the residual service time. When the arrival process is modeled by an FGN, we show that the waiting time tail distribution is asymptotically equal to the tail distribution of the residual service time if the latter is asymptotically heavier than Weibull distribution with shape parameter 2-2H, where H is the Hurst parameter of the FGN. If, however, this residual service time is asymptotically lighter than Weibull distribution with shape parameter 2-2H, then the waiting time tail distribution is dominated by the dependence structure of the arrival process so that it is asymptotically equal to Weibull distribution with shape parameter 2-2H.
机译:我们分析了具有长期依赖到达过程和次指数服务时间的单服务器队列中平稳等待时间和平稳虚拟等待时间的渐近尾部分布。我们调查了到达过程的远程依赖性和服务时间的尾部分布的共同影响。我们考虑两个已广泛用于表征远程依赖结构的流量模型,即M / G /∞输入模型和分数高斯噪声(FGN)模型。我们将重点放在“先到先服务”(FCFS)排队系统中客户的响应时间上,尽管结果会随任何任意排队规则传递到系统的积压订单分发中。当到达过程由M / G /∞输入模型驱动时,我们表明,如果剩余服务时间尾部分布F_e比剩余会话持续时间G_e轻,则静态等待时间将由远程依赖结构控制,由剩余会话持续时间G_e确定。如果剩余服务时间分布F_e大于剩余会话持续时间G_e,则固定等待时间的尾部分布将以剩余服务时间的尾部分布为主。当用FGN对到达过程进行建模时,我们表明,如果剩余服务时间的尾部分布渐近地大于形状参数2-2H的Weibull分布,则等待时间的尾部分布渐近地等于剩余服务时间的尾部分布,其中H是FGN的赫斯特参数。但是,如果此剩余服务时间渐近地小于形状参数为2-2H的Weibull分布,则等待时间的尾部分布将由到达过程的依存关系决定,因此它渐近地等于形状参数为2的Weibull分布。 -2小时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号