【24h】

Adaptive Anonymization of Data using b-Edge Cover

机译:使用b-Edge Cover的数据自适应匿名化

获取原文
获取原文并翻译 | 示例

摘要

We explore the problem of sharing data that pertains to individuals with anonymity guarantees, where each user requires a desired level of privacy. We propose the first shared-memory as well as distributed memory parallel algorithms for the adaptive anonymity problem that achieves this goal, and produces high quality anonymized datasets. The new algorithm is based on an optimization procedure that iteratively computes weights on the edges of a dissimilarity matrix, and at each iteration computes a minimum weighted b-Edge Cover in the graph. We describe how a 2-approximation algorithm for computing the b-Edge Cover can be used to solve the adaptive anonymity problem in parallel. We are able to solve adaptive anonymity problems with hundreds of thousands of instances and hundreds of features on a supercomputer in under five minutes. Our algorithm scales up to 8K cores on a distributed memory supercomputer, while also providing good speedups on shared memory multiprocessors. On smaller problems where an a Belief Propagation algorithm is feasible, our algorithm is two orders of magnitude faster.
机译:我们探讨了共享与匿名保证相关的个人数据的问题,其中每个用户都需要所需的隐私级别。针对提出的自适应匿名问题,我们提出了第一个共享内存以及分布式内存并行算法,以实现该目标并生成高质量的匿名数据集。新算法基于优化过程,该过程迭代地计算相异矩阵边缘的权重,并在每次迭代时计算图中的最小加权b边缘覆盖率。我们描述了如何使用2个近似算法来计算b-Edge Cover,以并行解决自适应匿名问题。我们能够在五分钟内用超级计算机上的数十万个实例和数百个功能解决自适应匿名问题。我们的算法可在分布式内存超级计算机上扩展到8K内核,同时还可以在共享内存多处理器上提供良好的加速。在信仰传播算法可行的较小问题上,我们的算法要快两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号