首页> 外文会议>International Conference for High Performance Computing, Networking, Storage and Analysis >Runtime Data Management on Non-Volatile Memory-based Heterogeneous Memory for Task-Parallel Programs
【24h】

Runtime Data Management on Non-Volatile Memory-based Heterogeneous Memory for Task-Parallel Programs

机译:任务并行程序基于非易失性内存的异构内存上的运行时数据管理

获取原文
获取原文并翻译 | 示例

摘要

Non-volatile memory (NVM) provides a scalable solution to replace DRAM as main memory. Because of relatively high latency and low bandwidth of NVM (comparing with DRAM), NVM often pairs with DRAM to build a heterogeneous main memory system (HMS). Deciding data placement on NVM-based HMS is critical to enable future NVM-based HPC. In this paper, we study task-parallel programs, and introduce a runtime system to address the data placement problem on NVM-based HMS. Leveraging semantics and execution mode of task-parallel programs, we efficiently characterize memory access patterns of tasks and reduce data movement overhead. We also introduce a performance model to predict performance for tasks with various data placements on HMS. Evaluating with a set of HPC benchmarks, we show that our runtime system achieves higher performance than a conventional HMS-oblivious runtime (24% improvement on average) and two state-of-the-art HMS-aware solutions (16% and 11% improvement on average, respectively).
机译:非易失性存储器(NVM)提供了可扩展的解决方案,以取代DRAM作为主存储器。由于NVM相对较高的延迟和较低的带宽(与DRAM相比),NVM通常与DRAM配对以构建异构主存储系统(HMS)。确定基于NVM的HMS上的数据放置对于将来启用基于NVM的HPC至关重要。在本文中,我们研究了任务并行程序,并介绍了一个运行时系统来解决基于NVM的HMS上的数据放置问题。利用任务并行程序的语义和执行模式,我们可以有效地表征任务的内存访问模式并减少数据移动开销。我们还介绍了一种性能模型,以预测在HMS上具有各种数据放置的任务的性能。通过一系列HPC基准评估,我们证明了我们的运行时系统比传统的HMS遗忘的运行时(平均提高24%)和两个最新的HMS感知解决方案(16 \\)具有更高的性能。平均分别提高了11%和11%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号