首页> 外文会议>International Conference for High Performance Computing, Networking, Storage and Analysis >Dynamic Tracing: Memoization of Task Graphs for Dynamic Task-Based Runtimes
【24h】

Dynamic Tracing: Memoization of Task Graphs for Dynamic Task-Based Runtimes

机译:动态跟踪:基于动态任务的运行时的任务图记忆

获取原文
获取原文并翻译 | 示例

摘要

Many recent programming systems for both supercomputing and data center workloads generate task graphs to express computations that run on parallel and distributed machines. Due to the overhead associated with constructing these graphs the dependence analysis that generates them is often statically computed and memoized, and the resulting graph executed repeatedly at runtime. However, many applications require a dynamic dependence analysis due to data dependent behavior, but there are new challenges in capturing and re- executing task graphs at runtime. In this work, we introduce dynamic tracing, a technique to capture a dynamic dependence analysis of a trace that generates a task graph, and replay it. We show that an implementation of dynamic tracing improves strong scaling by an average of 4.9× and up to 7.0× on a suite of already optimized benchmarks.
机译:许多用于超级计算和数据中心工作负载的最新编程系统都生成任务图来表示在并行和分布式计算机上运行的计算。由于与构建这些图相关的开销,通常会静态地计算和存储生成它们的依赖分析,并在运行时重复执行结果图。但是,由于数据相关行为,许多应用程序需要动态相关性分析,但是在运行时捕获和重新执行任务图面临着新的挑战。在这项工作中,我们介绍了动态跟踪,这是一种捕获对生成任务图的跟踪进行动态依赖分析并重播它的技术。我们显示,在一组已经优化的基准测试中,动态跟踪的实现将强缩放能力平均提高了4.9倍,最高提高了7.0倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号