【24h】

Distributed Ranked Search

机译:分布式排名搜索

获取原文
获取原文并翻译 | 示例

摘要

P2P deployments are a natural infrastructure for building distributed search networks. Proposed systems support locating and retrieving all results, but lack the information necessary to rank them. Users, however, are primarily interested in the most relevant results, not necessarily all possible results. Using random sampling, we extend a class of well-known information retrieval ranking algorithms such that they can be applied in this decentralized setting. We analyze the overhead of our approach, and quantify how our system scales with increasing number of documents, system size, document to node mapping (uniform versus non-uniform), and types of queries (rare versus popular terms). Our analysis and simulations show that a) these extensions are efficient, and scale with little overhead to large systems, and b) the accuracy of the results obtained using distributed ranking is comparable to that of a centralized implementation.
机译:P2P部署是用于构建分布式搜索网络的自然基础架构。拟议的系统支持查找和检索所有结果,但是缺少对它们进行排名所需的信息。但是,用户主要对最相关的结果感兴趣,而不一定对所有可能的结果感兴趣。使用随机采样,我们扩展了一类众所周知的信息检索排序算法,以便可以在这种分散式环境中应用它们。我们分析了这种方法的开销,并量化了系统如何随着文档数量,系统大小,文档到节点的映射(统一与非统一)以及查询类型(稀有与流行术语)的增加而扩展。我们的分析和仿真表明,a)这些扩展是有效的,并且可以在不增加大型系统开销的情况下进行扩展,并且b)使用分布式排序获得的结果的准确性与集中式实现相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号