【24h】

Multi-objective Genetic Algorithms to Create Ensemble of Classifiers

机译:创建分类器集合的多目标遗传算法

获取原文
获取原文并翻译 | 示例

摘要

Feature selection for ensembles has shown to be an effective strategy for ensemble creation due to its ability of producing good subsets of features, which make the classifiers of the ensemble disagree on difficult cases. In this paper we present an ensemble feature selection approach based on a hierarchical multi-objective genetic algorithm. The algorithm operates in two levels. Firstly, it performs feature selection in order to generate a set of classifiers and then it chooses the best team of classifiers. In order to show its robustness, the method is evaluated in two different contexts: supervised and unsupervised feature selection. In the former, we have considered the problem of handwritten digit recognition while in the latter, we took into account the problem of handwritten month word recognition. Experiments and comparisons with classical methods, such as Bagging and Boosting, demonstrated that the proposed methodology brings compelling improvements when classifiers have to work with very low error rates.
机译:集成的特征选择已被证明是一种有效的集成创建策略,因为它具有生成良好的特征子集的能力,这使集成的分类器在困难的情况下无法达成共识。在本文中,我们提出了一种基于分层多目标遗传算法的集成特征选择方法。该算法分两个级别进行。首先,它执行特征选择以生成一组分类器,然后选择最佳的分类器团队。为了显示其鲁棒性,在两种不同的上下文中评估了该方法:有监督和无监督的特征选择。在前者中,我们考虑了手写数字识别的问题,而在后者中,我们考虑了手写月字识别的问题。与经典方法(例如装袋和提振)的实验和比较表明,当分类器必须以非常低的错误率工作时,所提出的方法会带来令人信服的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号