首页> 外文会议>2017 International Conference on Computer Technology, Electronics and Communication >Two-step Judgment Algorithm for Robust Voice Activity Detection Based on Deep Neural Networks
【24h】

Two-step Judgment Algorithm for Robust Voice Activity Detection Based on Deep Neural Networks

机译:基于深度神经网络的鲁棒语音活动检测两步判断算法

获取原文
获取原文并翻译 | 示例

摘要

Voice Activity Detection (VAD) is an important front-end process for speech-based applications such as automatic speech recognition (ASR) and speaker diarization. VAD attempts to identify all the segments containing speech in an audio signal. In this paper, a robust VAD system is developed based on deep neural network (DNN) fusion with Combo-SAD. DNN model is an effective supervised approach that can achieve 4% of missed detection rate (Pmiss) at a falsealarm rate (Pfa) of 5%, Combo-SAD is an unsupervised approach designed for noise robust and reported a 5% Pmiss at Pfa of 3%. Combining the advantages of both techniques, this paper attempts to design a 2-step judgment approach. Experimental results on database containing various type of audios show that the overall error rate reaches 13.50%, which indicates the proposed VAD system is robust and effective.
机译:语音活动检测(VAD)是基于语音的应用程序(例如自动语音识别(ASR)和说话者区分)的重要前端过程。 VAD尝试识别音频信号中包含语音的所有片段。本文基于深度神经网络(DNN)与Combo-SAD融合,开发了一种鲁棒的VAD系统。 DNN模型是一种有效的监督方法,可以实现4%的漏检率(P \ n 未命中的 \ n)的误报率(Pfa)为5%,Combo-SAD是一种不受监督的方法,旨在增强噪声,并报告了Pfa为3%时,Pmiss的百分比为5%。结合这两种技术的优点,本文尝试设计一种两步判断方法。在包含各种类型音频的数据库上的实验结果表明,总体错误率达到13.50%,这表明所提出的VAD系统是健壮且有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号